X <- iris[c(1:49, 51:99, 101:149), 1:4]
Y <- iris[c(1:49, 51:99, 101:149), 5]
NewX <- iris[c(50, 100, 150), 1:4]
pvs.logreg(NewX, X, Y, tau.o=1, pen.method="vectors", progress=TRUE)
# A bigger data example: Buerk's hospital data.
if (FALSE) {
data(buerk)
X.raw <- as.matrix(buerk[,1:21])
Y.raw <- buerk[,22]
n0.raw <- sum(1 - Y.raw)
n1 <- sum(Y.raw)
n0 <- 3*n1
X0 <- X.raw[Y.raw==0,]
X1 <- X.raw[Y.raw==1,]
tmpi0 <- sample(1:n0.raw,size=3*n1,replace=FALSE)
tmpi1 <- sample(1:n1 ,size= n1,replace=FALSE)
Xtrain <- rbind(X0[tmpi0[1:(n0-100)],],X1[1:(n1-100),])
Ytrain <- c(rep(1,n0-100),rep(2,n1-100))
Xtest <- rbind(X0[tmpi0[(n0-99):n0],],X1[(n1-99):n1,])
Ytest <- c(rep(1,100),rep(2,100))
PV <- pvs.logreg(Xtest,Xtrain,Ytrain,tau.o=2,progress=TRUE)
analyze.pvs(Y=Ytest,pv=PV,pvplot=FALSE)
}
Run the code above in your browser using DataLab