iGWAS(P_current, N_current, P_prior, N_prior, q = 0.05, weighting_method = "bayes", p_adjust_method = "genome-wide", sides = 2, phi = 1, beta = 2, UB_exp = Inf, figure = "FALSE", GWAS_data_frame = NA)q = 0.05c("unweighted",
"bayes", "spjotvoll", "exponential"). The default is "bayes"."genome-wide" and those from the p.adjust function in the stats package.:
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none").
"genome-wide" tests all hypotheses at the genome-wide level 5*10^-8.
The default is "genome-wide".sides = 2phi = 1.
Used only for Bayes weights.exp(mu*beta), default beta=2.
Used only for Exponential weights.UB = Inf).
Used only for Exponential weights.figure = "TRUE" creates a manhattan plot of the weighted and unweighted p-values.
Possible values c("TRUE","FALSE"), default "FALSE"figure = "TRUE", this is the parameter used to create a
Manattan plot. it must be a data frame with columns containing c("CHR","BP").
These parameters are passed to the qqman package for plotting manhattan plots. Default is NA.sig_ind: A vector of 0-1s indicating the significant tests (1-s)num_sig: The number of significant tests. Equals sum(sig_ind)w: The computed p-value weightsP_w: The weighted p-values. These equal P_current/w
For more details, see the paper "Optimal Multiple Testing Under a Gaussian Prior on the Effect Sizes", by Dobriban, Fortney, Kim and Owen, http://arxiv.org/abs/1504.02935
bayes_weights;
exp_weights;
spjotvoll_weights