Learn R Programming

⚠️There's a newer version (1.0.5) of this package.Take me there.

qad


Summary

The R-package qad (short for quantification of asymmetric dependence) allows to estimate the (directed) dependence of two random variables X and Y. The estimated population value q(X,Y) introduced in [1,3] fulfills the following properties:

  • q(X,Y) = 1 if and only if Y is a function of X (knowing X means knowing Y)
  • q(X,Y) = 0 if and only if X and Y are independent (no information gain).

While the Pearson correlation coefficient assesses only linear and Spearman rank correlation only monotonic relationships, qad is able to detect any kind of association. For further information we refer to the vignette or the related publications [1,2,3].

Installation

The easiest way to get the package qad is:

install.packages("qad")

In order to install the development version of qad from GitHub:

# install devtools package
if (!requireNamespace("devtools", quietly = TRUE)) {
  install.packages("devtools")
}
# install package
devtools::install_github("griefl/qad", dependencies = TRUE)

Usage

library(qad)

set.seed(314)
n <- 100
x <- rnorm(n)
y <- x^2 + rnorm(n, 0, 1)
plot(x,y, pch = 16)
fit <- qad(x,y)
#> 
#> quantification of asymmetric dependence: 
#> 
#> Data: x1 := x
#>       x2 := y
#> 
#> Sample Size: 100
#> Number of unique ranks: x1: 100
#>                         x2: 100
#>                    (x1,x2): 100
#> Resolution: 10 x 10
#> 
#> Dependence measures:
#>                     q p.values
#>  q(x1,x2)       0.610    0.000
#>  q(x2,x1)       0.393    0.002
#>  max.dependence 0.610    0.000
#> 
#>                      a p.values
#>  asymmetry       0.217       NA
coef(fit)
#>         q(x1,x2)         q(x2,x1)   max.dependence        asymmetry 
#>            0.610            0.393            0.610            0.217 
#>       p.q(x1,x2)       p.q(x2,x1) p.max.dependence      p.asymmetry 
#>            0.000            0.002            0.000               NA

#Comparison with correlation
cor(x,y, method = "pearson")
#> [1] -0.04404337
cor(x,y, method = "spearman")
#> [1] 0.06546655
cor(x,y, method = "kendall")
#> [1] 0.05090909

References

  • [1] R.R. Junker, F. Griessenberger, W. Trutschnig: Estimating scale-invariant directed dependence of bivariate distributions, Computational Statistics and Data Analysis, (2021), 153, 107058, https://doi.org/10.1016/j.csda.2020.107058

  • [2] R.R. Junker, F. Griessenberger, W. Trutschnig: A copula-based measure for quantifying asymmetry in dependence and associations, https://arxiv.org/abs/1902.00203

  • [3] W. Trutschnig: On a strong metric on the space of copulas and its induced dependence measure, Journal of Mathematical Analysis and Applications, 2011, (384), 690-705. https://doi.org/10.1016/j.jmaa.2011.06.013

Copy Link

Version

Install

install.packages('qad')

Monthly Downloads

332

Version

1.0.1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Florian Griessenberger

Last Published

December 2nd, 2021

Functions in qad (1.0.1)

D1

Calculate the D1 distance between two dependence structures
pairwise.qad

Pairwise quantification of (asymmetric and directed) dependencies
qad-package

Quantification of Asymmetric Dependencies
qad

Measure of (asymmetric and directed) dependence
heatmap.qad

Heatmap of dependence measures
qad_distribution

Distribution of qad (H0: independence)
ECBC

Calculate empirical checkerboard copula
summary.qad

Summarize a qad object
plot_density

Plot density of empirical checkerboard copula
predict.qad

Predict conditional probabilities
plot.qad

Plot conditional probabilites
emp_c_copula

The empirical checkerboard copula