Learn R Programming

qcr (version 0.1-18)

qcs.p: Function to plot Shewhart xbar chart

Description

This function is used to compute statistics required by the p chart.

Usage

qcs.p(x, ...)
"qcs.p"(x, var.index = 1, sample.index = 2, covar.index = NULL, covar.names = NULL, data.name = NULL, sizes = NULL, center = NULL, conf.nsigma = 3, limits = NULL, plot = FALSE, ...)
"qcs.p"(x, center = NULL, conf.nsigma = 3, limits = NULL, plot = FALSE, ...)

Arguments

x
an R object (used to select the method). See details.
...
arguments passed to or from methods.
center
a value specifying the center of group statistics or the ''target'' value of the process.
conf.nsigma
a numeric value used to compute control limits, specifying the number of standard deviations (if conf.nsigma > 1) or the confidence level (if 0 < conf.nsigma < 1).
limits
a two-values vector specifying control limits.
plot
a logical value indicating should be plotted.
var.index
a scalar with the column number corresponding the observed data for the variable (the variable quality). Alternativelly can be a string with the name of the quality variable.
sample.index
a scalar with the column number corresponding the index each group (sample).
covar.index
optional. A scalar or numeric vector with the column number(s) corresponding to the covariate(s). Alternativelly can be a character vector with the names of the covariates.
covar.names
optional. A string or vector of strings with names for the covariate columns. Only valid if there is more than one column of data. By default, takes the names from the original object.
data.name
a string specifying the name of the variable which appears on the plots. If not provided is taken from the object given as data.
sizes
optional. A value or a vector of values specifying the sample sizes associated with each group. For continuous data the sample sizes are obtained counting the non-NA elements of the sample.index vector. For attribute variable the argument sizes is required.

Examples

Run this code
library(qcr)
data(orangejuice)
str(orangejuice)
attach(orangejuice)

datos.qcd <- qcd(data = orangejuice, var.index = 1, sample.index = 2,
                sizes = size, type.data = "atributte")

res.qcs <- qcs.p(datos.qcd)
summary(res.qcs)
plot(res.qcs)

datos.qcs <- qcs.p(orangejuice[trial,c(1,2)], sizes = orangejuice[trial,3])
plot(datos.qcs)

Run the code above in your browser using DataLab