Last chance! 50% off unlimited learning
Sale ends in
termco
- Search a transcript by any number of grouping variables for
categories (themes) of grouped root terms. While there are other termco
functions in the termco family (e.g., termco_d
)
termco
is a more powerful and flexible wrapper intended for general
use.
termco_d
- Search a transcript by any number of grouping variables for
root terms.
term_match
- Search a transcript for words that exactly match term(s).
termco2mat
- Convert a termco dataframe to a matrix for use with
visualization functions (e.g., heatmap.2
).
termco(text.var, grouping.var = NULL, match.list, short.term = TRUE,
ignore.case = TRUE, elim.old = TRUE, percent = TRUE, digits = 2,
apostrophe.remove = FALSE, char.keep = NULL, digit.remove = NULL,
zero.replace = 0, ...)termco_d(text.var, grouping.var = NULL, match.string, short.term = FALSE,
ignore.case = TRUE, zero.replace = 0, percent = TRUE, digits = 2,
apostrophe.remove = FALSE, char.keep = NULL, digit.remove = TRUE, ...)
term_match(text.var, terms, return.list = TRUE, apostrophe.remove = FALSE)
termco2mat(dataframe, drop.wc = TRUE, short.term = TRUE,
rm.zerocol = FALSE, no.quote = TRUE, transform = TRUE,
trim.terms = TRUE)
The text variable.
The grouping variables. Default NULL
generates
one word list for all text. Also takes a single grouping variable or a list
of 1 or more grouping variables.
A list of named character vectors.
logical. If TRUE
column names are trimmed versions
of the match list, otherwise the terms are wrapped with 'term(phrase)'
logical. If TRUE
case is ignored.
logical. If TRUE
eliminates the columns that are
combined together by the named match.list.
logical. If TRUE
output given as percent. If
FALSE
the output is proportion.
Integer; number of decimal places to round when printing.
logical. If TRUE
removes apostrophes from
the text before examining.
A character vector of symbol character (i.e., punctuation)
that strip should keep. The default is to strip everything except
apostrophes. termco
attempts to auto detect characters to
keep based on the elements in match.list
.
logical. If TRUE
strips digits from the text
before counting. termco
attempts to auto detect if digits
should be retained based on the elements in match.list
.
Value to replace 0 values with.
A vector of terms to search for. When using inside of
term_match
the term(s) must be words or partial words but do not have
to be when using termco_d
(i.e., they can be phrases,
symbols etc.).
The terms to search for in the text.var
. Similar to
match.list
but these terms must be words or partial words rather than
multiple words and symbols.
logical. If TRUE
returns the output for multiple
terms as a list by term rather than a vector.
A termco (or termco_d) dataframe or object.
logical. If TRUE
the word count column will be
dropped.
logical. If TRUE
any column containing all zeros
will be removed from the matrix.
logical. If TRUE
the matrix will be printed without
quotes if it's character.
logical. If TRUE
the matrix will be transformed.
logical. If TRUE
trims the column header/names to
ensure there is not a problem with spacing when using in other R functions.
Other argument supplied to strip
.
termco
& termco_d
- both return a list, of class
"termco", of data frames and information regarding word counts:
raw word counts by grouping variable
proportional word counts by grouping variable; proportional to each individual's word use
a character combination data frame of raw and proportional
value to replace zeros with; mostly internal use
The value of percent used for plotting purposes.
integer value of number of digits to display; mostly internal use
term_match - returns a list or vector of possible words that match term(s).
termco2mat - returns a matrix of term counts.
Percentages are calculated as a ratio of counts of
match.list
elements to word counts. Word counts do not contain
symbols or digits. Using symbols, digits or small segments of full words
(e.g., "to") could total more than 100%.
# NOT RUN {
#termco examples:
term <- c("the ", "she", " wh")
(out <- with(raj.act.1, termco(dialogue, person, term)))
plot(out)
scores(out)
plot(scores(out))
counts(out)
plot(counts(out))
proportions(out)
plot(proportions(out))
# General form for match.list as themes
#
# ml <- list(
# cat1 = c(),
# cat2 = c(),
# catn = c()
# )
ml <- list(
cat1 = c(" the ", " a ", " an "),
cat2 = c(" I'" ),
"good",
the = c("the", " the ", " the", "the")
)
(dat <- with(raj.act.1, termco(dialogue, person, ml)))
scores(dat) #useful for presenting in tables
counts(dat) #prop and raw counts are useful for performing calculations
proportions(dat)
datb <- with(raj.act.1, termco(dialogue, person, ml,
short.term = FALSE, elim.old=FALSE))
ltruncdf(datb, 20, 6)
(dat2 <- data.frame(dialogue=c("@bryan is bryan good @br",
"indeed", "@ brian"), person=qcv(A, B, A)))
ml2 <- list(wrds=c("bryan", "indeed"), "@", bryan=c("bryan", "@ br", "@br"))
with(dat2, termco(dialogue, person, match.list=ml2))
with(dat2, termco(dialogue, person, match.list=ml2, percent = FALSE))
DATA$state[1] <- "12 4 rgfr r0ffrg0"
termco(DATA$state, DATA$person, '0', digit.remove=FALSE)
DATA <- qdap::DATA
#Using with term_match and exclude
exclude(term_match(DATA$state, qcv(th), FALSE), "truth")
termco(DATA$state, DATA$person, exclude(term_match(DATA$state, qcv(th),
FALSE), "truth"))
MTCH.LST <- exclude(term_match(DATA$state, qcv(th, i)), qcv(truth, stinks))
termco(DATA$state, DATA$person, MTCH.LST)
syns <- synonyms("doubt")
syns[1]
termco(DATA$state, DATA$person, unlist(syns[1]))
synonyms("doubt", FALSE)
termco(DATA$state, DATA$person, list(doubt = synonyms("doubt", FALSE)))
termco(DATA$state, DATA$person, syns)
#termco_d examples:
termco_d(DATA$state, DATA$person, c(" the", " i'"))
termco_d(DATA$state, DATA$person, c(" the", " i'"), ignore.case=FALSE)
termco_d(DATA$state, DATA$person, c(" the ", " i'"))
# termco2mat example:
MTCH.LST <- exclude(term_match(DATA$state, qcv(a, i)), qcv(is, it, am, shall))
termco_obj <- termco(DATA$state, DATA$person, MTCH.LST)
termco2mat(termco_obj)
plot(termco_obj)
plot(termco_obj, label = TRUE)
plot(termco_obj, label = TRUE, text.color = "red")
plot(termco_obj, label = TRUE, text.color="red", lab.digits=3)
## REVERSE TERMCO (return raw words found per variable)
df <- data.frame(x=1:6,
y = c("the fluffy little bat" , "the man was round like a ball",
"the fluffy little bat" , "the man was round like a ball",
"he ate the chair" , "cough, cough"),
stringsAsFactors=FALSE)
l <- list("bat" ,"man", "ball", "heavy")
z <- counts(termco(df$y, qdapTools::id(df), l))[, -2]
counts2list(z[, -1], z[, 1])
## politness
politness <- c("please", "excuse me", "thank you", "you welcome",
"you're welcome", "i'm sorry", "forgive me", "pardon me")
with(pres_debates2012, termco(dialogue, person, politness))
with(hamlet, termco(dialogue, person, politness))
## Term Use Percentage per N Words
dat <- with(raj, chunker(dialogue, person, n.words = 100, rm.unequal = TRUE))
dat2 <- list2df(dat, "Dialogue", "Person")
dat2[["Duration"]] <- unlist(lapply(dat, id, pad=FALSE))
dat2 <- qdap_df(dat2, "Dialogue")
Top5 <- sapply(split(raj$dialogue, raj$person), wc, FALSE) %>%
sort(decreasing=TRUE) %>%
list2df("wordcount", "person") %>%
`[`(1:5, 2)
propdat <- dat2 %&%
termco(list(Person, Duration), as.list(Top25Words[1:5]), percent = FALSE) %>%
proportions %>%
colsplit2df %>%
reshape2::melt(id=c("Person", "Duration", "word.count"), variable="Word") %>%
dplyr::filter(Person %in% Top5)
head(propdat)
ggplot(propdat, aes(y=value, x=Duration, group=Person, color=Person)) +
geom_line(size=1.25) +
facet_grid(Word~., scales="free_y") +
ylab("Percent of Word Use") +
xlab("Per 100 Words") +
scale_y_continuous(labels = percent)
ggplot(propdat, aes(y=value, x=Duration, group=Word, color=Word)) +
geom_line(size=1.25) +
facet_grid(Person~.) +
ylab("Percent of Word Use") +
xlab("Per 100 Words") +
scale_y_continuous(labels = percent)
ggplot(propdat, aes(y=value, x=Duration, group=Word)) +
geom_line() +
facet_grid(Word~Person, scales="free_y") +
ylab("Percent of Word Use") +
xlab("Per 100 Words") +
scale_y_continuous(labels = percent) +
ggthemes::theme_few()
## Discourse Markers: See...
## Schffrin, D. (2001). Discourse markers: Language, meaning, and context.
## In D. Schiffrin, D. Tannen, & H. E. Hamilton (Eds.), The handbook of
## discourse analysis (pp. 54-75). Malden, MA: Blackwell Publishing.
discoure_markers <- list(
response_cries = c(" oh ", " ah ", " aha ", " ouch ", " yuk "),
back_channels = c(" uh-huh ", " uhuh ", " yeah "),
summons = " hey ",
justification = " because "
)
(markers <- with(pres_debates2012,
termco(dialogue, list(person, time), discoure_markers)
))
plot(markers, high="red")
with(pres_debates2012,
termco(dialogue, list(person, time), discoure_markers, elim.old = FALSE)
)
with(pres_debates2012,
dispersion_plot(dialogue, unlist(discoure_markers), person, time)
)
# }
Run the code above in your browser using DataLab