polarity
- Approximate the sentiment (polarity) of text by grouping
variable(s).
polarity(
text.var,
grouping.var = NULL,
polarity.frame = qdapDictionaries::key.pol,
constrain = FALSE,
negators = qdapDictionaries::negation.words,
amplifiers = qdapDictionaries::amplification.words,
deamplifiers = qdapDictionaries::deamplification.words,
question.weight = 0,
amplifier.weight = 0.8,
n.before = 4,
n.after = 2,
rm.incomplete = FALSE,
digits = 3,
...
)
The text variable.
The grouping variables. Default NULL
generates
one word list for all text. Also takes a single grouping variable or a list
of 1 or more grouping variables.
A dataframe or hash key of positive/negative words and weights.
logical. If TRUE
polarity values are constrained to
be between -1 and 1 using the following transformation:
$$\left[\left( 1 - \frac{1}{exp(\delta)}\right ) \cdot 2 \right] - 1$$
A character vector of terms reversing the intent of a positive or negative word.
A character vector of terms that increase the intensity of a positive or negative word.
A character vector of terms that decrease the intensity of a positive or negative word.
The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity.
The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value.
The number of words to consider as valence shifters before the polarized word.
The number of words to consider as valence shifters after the polarized word.
logical. If TRUE
text rows ending with qdap's
incomplete sentence end mark (|
) will be removed from the analysis.
Integer; number of decimal places to round when printing.
Other arguments supplied to strip
.
Returns a list of:
A dataframe of scores per row with:
group.var - the grouping variable
wc - word count
polarity - sentence polarity score
pos.words - words considered positive
neg.words - words considered negative
text.var - the text variable
A dataframe with the average polarity score by grouping variable:
group.var - the grouping variable
total.sentences - Total sentences spoken.
total.words - Total words used.
ave.polarity - The sum of all polarity scores for that group divided by number of sentences spoken.
sd.polarity - The standard deviation of that group's sentence level polarity scores.
stan.mean.polarity - A standardized polarity score calculated by taking the average polarity score for a group divided by the standard deviation.
integer value od number of digits to display; mostly internal use
The equation used by the algorithm to assign value to polarity of
each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to
tag polarized words. A context cluster (\(x_i^{T}\)) of words is
pulled from around this polarized word (default 4 words before and two words
after) to be considered as valence shifters. The words in this context
cluster are tagged as neutral (\(x_i^{0}\)), negator
(\(x_i^{N}\)), amplifier (\(x_i^{a}\)), or de-amplifier
(\(x_i^{d}\)). Neutral words hold no value
in the equation but do affect word count (\(n\)). Each polarized word is
then weighted \(w\) based on the weights from the polarity.frame
argument and then further weighted by the number and position of the valence
shifters directly surrounding the positive or negative word. The researcher
may provide a weight \(c\) to be utilized with amplifiers/de-amplifiers
(default is .8; deamplifier weight is constrained to -1 lower bound). Last,
these context cluster (\(x_i^{T}\)) are summed and divided by the
square root of the word count (\(\sqrt{n}\)) yielding an unbounded
polarity score (\(\delta\)). Note that context clusters containing a
comma before the polarized word will only consider words found after the
comma.
$$\delta=\frac{x_i^T}{\sqrt{n}}$$
Where:
$$x_i^T=\sum{((1 + c(x_i^{A} - x_i^{D}))\cdot w(-1)^{\sum{x_i^{N}}})}$$
$$x_i^{A}=\sum{(w_{neg}\cdot x_i^{a})}$$
$$x_i^D = \max(x_i^{D'}, -1)$$
$$x_i^{D'}= \sum{(- w_{neg}\cdot x_i^{a} + x_i^{d})}$$
$$w_{neg}= \left(\sum{x_i^{N}}\right) \bmod {2}$$
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.
https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for
http://hedonometer.org/papers.html Links to papers on hedonometrics
# NOT RUN { with(DATA, polarity(state, list(sex, adult))) (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) counts(poldat) scores(poldat) plot(poldat) poldat2 <- with(mraja1spl, polarity(dialogue, list(sex, fam.aff, died))) colsplit2df(scores(poldat2)) plot(poldat2) plot(scores(poldat2)) cumulative(poldat2) poldat3 <- with(rajSPLIT, polarity(dialogue, person)) poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[, "ave.polarity"]) poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[, "polarity"]) htruncdf(scores(poldat3), 10) htruncdf(counts(poldat3), 15, 8) plot(poldat3) plot(poldat3, nrow=4) qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity") ## Create researcher defined sentiment.frame POLKEY <- sentiment_frame(positive.words, negative.words) POLKEY c("abrasive", "abrupt", "happy") %hl% POLKEY # Augmenting the sentiment.frame mycorpus <- c("Wow that's a raw move.", "His jokes are so corny") counts(polarity(mycorpus)) POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny")) counts(polarity(mycorpus, polarity.frame=POLKEY)) ## ANIMATION #=========== (deb2 <- with(subset(pres_debates2012, time=="time 2"), polarity(dialogue, person))) bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") print(bg_black, pause=.75) bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") print(bgb, bg="black", pause=.75) ## Save it library(animation) library(igraph) library(plotrix) loc <- folder(animation_polarity) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN <- function() { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(-1.1, -1.25, -.2, -1.2) Legend.cex <- 1 lapply(seq_along(bgb), function(i) { par(mar=c(2, 0, 1, 0), bg="black") set.seed(10) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") animation::ani.pause() }) } FUN() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 500, ani.width=500, outdir = file.path(loc, "new"), single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") ## Animated corresponding text plot Animate(deb2, type="text") #=====================# ## Complex Animation ## #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gridExtra) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Generate a folder loc2 <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) #=====================# library(animation) library(grid) library(gridBase) library(qdap) library(qdapTools) library(igraph) library(plotrix) library(gplots) deb2dat <- subset(pres_debates2012, time=="time 2") deb2dat[, "person"] <- factor(deb2dat[, "person"]) (deb2 <- with(deb2dat, polarity(dialogue, person))) ## Set up the network version bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70") bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22, color="grey40") bgb <- edge_apply(bgb, label.color="yellow") ## Set up the bar version deb2_bar <- Animate(deb2, as.network=FALSE) ## Set up the line version deb2_line <- plot(cumulative(deb2_bar)) ## Generate a folder loc2b <- folder(animation_polarity2) ## Set up the plotting function oopt <- animation::ani.options(interval = 0.1) FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc2b, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() uns <- unit(c(-1.3,.5,-.75,.25), "cm") p <- deb2_bar[[i]] + theme(plot.margin = uns, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black")) print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN2() ## Detect OS type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc2b, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN2(TRUE) ## Increased complexity ## -------------------- ## Helper function to cbind ggplots cbinder <- function(x, y){ uns_x <- unit(c(-1.3,.15,-.75,.25), "cm") uns_y <- unit(c(-1.3,.5,-.75,.15), "cm") x <- x + theme(plot.margin = uns_x, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) y <- y + theme(plot.margin = uns_y, text=element_text(color="white"), plot.background = element_rect(fill = "black", color="black") ) plots <- list(x, y) grobs <- list() heights <- list() for (i in 1:length(plots)){ grobs[[i]] <- ggplotGrob(plots[[i]]) heights[[i]] <- grobs[[i]]$heights[2:5] } maxheight <- do.call(grid::unit.pmax, heights) for (i in 1:length(grobs)){ grobs[[i]]$heights[2:5] <- as.list(maxheight) } do.call("arrangeGrob", c(grobs, ncol = 2)) } deb2_combo <- Map(cbinder, deb2_bar, deb2_line) ## Generate a folder loc3 <- folder(animation_polarity3) FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) { Title <- "Animated Polarity: 2012 Presidential Debate 2" Legend <- c(.2, -1.075, 1.5, -1.005) Legend.cex <- 1 lapply(theseq, function(i) { if (follow) { png(file=sprintf("%s/images/Rplot%s.png", loc3, i), width=650, height=725) } ## Set up the layout layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE)) ## Plot 1 par(mar=c(2, 0, 2, 0), bg="black") #par(mar=c(2, 0, 2, 0)) set.seed(20) plot.igraph(bgb[[i]], edge.curved=TRUE) mtext(Title, side=3, col="white") color.legend(Legend[1], Legend[2], Legend[3], Legend[4], c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]], cex = Legend.cex, col="white") ## Plot2 plot.new() vps <- baseViewports() p <- deb2_combo[[i]] print(p,vp = vpStack(vps$figure,vps$plot)) animation::ani.pause() if (follow) { dev.off() } }) } FUN3() type <- if(.Platform$OS.type == "windows") shell else system saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE, ani.height = 1000, ani.width=650, outdir = loc3, single.opts = "'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0") FUN3(TRUE) ##-----------------------------## ## Constraining between -1 & 1 ## ##-----------------------------## ## The old behavior of polarity constrained the output to be between -1 and 1 ## this can be replicated via the `constrain = TRUE` argument: polarity("really hate anger") polarity("really hate anger", constrain=TRUE) #==================# ## Static Network ## #==================# (poldat <- with(sentSplit(DATA, 4), polarity(state, person))) m <- Network(poldat) m print(m, bg="grey97", vertex.color="grey75") print(m, title="Polarity Discourse Map", title.color="white", bg="black", legend.text.color="white", vertex.label.color = "grey70", edge.label.color="yellow") ## or use themes: dev.off() m + qtheme() m + theme_nightheat dev.off() m+ theme_nightheat(title="Polarity Discourse Map") #===============================# ## CUMULATIVE POLARITY EXAMPLE ## #===============================# # Hedonometrics # #===============================# poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE)) polcount <- na.omit(counts(poldat4)$polarity) len <- length(polcount) cummean <- function(x){cumsum(x)/seq_along(x)} cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len) ## Calculate background rectangles ends <- cumsum(rle(counts(poldat4)$act)$lengths) starts <- c(1, head(ends + 1, -1)) rects <- data.frame(xstart = starts, xend = ends + 1, Act = c("I", "II", "III", "IV", "V")) library(ggplot2) ggplot() + theme_bw() + geom_rect(data = rects, aes(xmin = xstart, xmax = xend, ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) + geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) + geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) + annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30", label = "Average Polarity", vjust = .3, size=3) + geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) + ylab("Cumulative Average Polarity") + xlab("Duration") + scale_x_continuous(expand = c(0,0)) + geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04, label=paste("Act", Act)), size=3) + guides(fill=FALSE) + scale_fill_brewer(palette="Set1") # }
Run the code above in your browser using DataCamp Workspace