
polarity
- Approximate the sentiment (polarity) of text by grouping
variable(s).
polarity(
text.var,
grouping.var = NULL,
polarity.frame = qdapDictionaries::key.pol,
constrain = FALSE,
negators = qdapDictionaries::negation.words,
amplifiers = qdapDictionaries::amplification.words,
deamplifiers = qdapDictionaries::deamplification.words,
question.weight = 0,
amplifier.weight = 0.8,
n.before = 4,
n.after = 2,
rm.incomplete = FALSE,
digits = 3,
...
)
The text variable.
The grouping variables. Default NULL
generates
one word list for all text. Also takes a single grouping variable or a list
of 1 or more grouping variables.
A dataframe or hash key of positive/negative words and weights.
logical. If TRUE
polarity values are constrained to
be between -1 and 1 using the following transformation:
A character vector of terms reversing the intent of a positive or negative word.
A character vector of terms that increase the intensity of a positive or negative word.
A character vector of terms that decrease the intensity of a positive or negative word.
The weighting of questions (values from 0 to 1). Default 0 corresponds with the belief that questions (pure questions) are not polarized. A weight may be applied based on the evidence that the questions function with polarity.
The weight to apply to amplifiers/deamplifiers (values from 0 to 1). This value will multiply the polarized terms by 1 + this value.
The number of words to consider as valence shifters before the polarized word.
The number of words to consider as valence shifters after the polarized word.
logical. If TRUE
text rows ending with qdap's
incomplete sentence end mark (|
) will be removed from the analysis.
Integer; number of decimal places to round when printing.
Other arguments supplied to strip
.
Returns a list of:
A dataframe of scores per row with:
group.var - the grouping variable
wc - word count
polarity - sentence polarity score
pos.words - words considered positive
neg.words - words considered negative
text.var - the text variable
A dataframe with the average polarity score by grouping variable:
group.var - the grouping variable
total.sentences - Total sentences spoken.
total.words - Total words used.
ave.polarity - The sum of all polarity scores for that group divided by number of sentences spoken.
sd.polarity - The standard deviation of that group's sentence level polarity scores.
stan.mean.polarity - A standardized polarity score calculated by taking the average polarity score for a group divided by the standard deviation.
integer value od number of digits to display; mostly internal use
The equation used by the algorithm to assign value to polarity of
each sentence fist utilizes the sentiment dictionary (Hu and Liu, 2004) to
tag polarized words. A context cluster (polarity.frame
argument and then further weighted by the number and position of the valence
shifters directly surrounding the positive or negative word. The researcher
may provide a weight
Where:
Hu, M., & Liu, B. (2004). Mining opinion features in customer reviews. National Conference on Artificial Intelligence.
https://www.slideshare.net/jeffreybreen/r-by-example-mining-twitter-for
http://hedonometer.org/papers.html Links to papers on hedonometrics
# NOT RUN {
with(DATA, polarity(state, list(sex, adult)))
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
counts(poldat)
scores(poldat)
plot(poldat)
poldat2 <- with(mraja1spl, polarity(dialogue,
list(sex, fam.aff, died)))
colsplit2df(scores(poldat2))
plot(poldat2)
plot(scores(poldat2))
cumulative(poldat2)
poldat3 <- with(rajSPLIT, polarity(dialogue, person))
poldat3[["group"]][, "OL"] <- outlier_labeler(scores(poldat3)[,
"ave.polarity"])
poldat3[["all"]][, "OL"] <- outlier_labeler(counts(poldat3)[,
"polarity"])
htruncdf(scores(poldat3), 10)
htruncdf(counts(poldat3), 15, 8)
plot(poldat3)
plot(poldat3, nrow=4)
qheat(scores(poldat3)[, -7], high="red", order.b="ave.polarity")
## Create researcher defined sentiment.frame
POLKEY <- sentiment_frame(positive.words, negative.words)
POLKEY
c("abrasive", "abrupt", "happy") %hl% POLKEY
# Augmenting the sentiment.frame
mycorpus <- c("Wow that's a raw move.", "His jokes are so corny")
counts(polarity(mycorpus))
POLKEY <- sentiment_frame(c(positive.words, "raw"), c(negative.words, "corny"))
counts(polarity(mycorpus, polarity.frame=POLKEY))
## ANIMATION
#===========
(deb2 <- with(subset(pres_debates2012, time=="time 2"),
polarity(dialogue, person)))
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
print(bg_black, pause=.75)
bgb <- vertex_apply(bg_black, label.color="grey80", size=20, color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
print(bgb, bg="black", pause=.75)
## Save it
library(animation)
library(igraph)
library(plotrix)
loc <- folder(animation_polarity)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN <- function() {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(-1.1, -1.25, -.2, -1.2)
Legend.cex <- 1
lapply(seq_along(bgb), function(i) {
par(mar=c(2, 0, 1, 0), bg="black")
set.seed(10)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
animation::ani.pause()
})
}
FUN()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 500, ani.width=500,
outdir = file.path(loc, "new"), single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
## Animated corresponding text plot
Animate(deb2, type="text")
#=====================#
## Complex Animation ##
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gridExtra)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Generate a folder
loc2 <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
#=====================#
library(animation)
library(grid)
library(gridBase)
library(qdap)
library(qdapTools)
library(igraph)
library(plotrix)
library(gplots)
deb2dat <- subset(pres_debates2012, time=="time 2")
deb2dat[, "person"] <- factor(deb2dat[, "person"])
(deb2 <- with(deb2dat, polarity(dialogue, person)))
## Set up the network version
bg_black <- Animate(deb2, neutral="white", current.speaker.color="grey70")
bgb <- vertex_apply(bg_black, label.color="grey80", size=30, label.size=22,
color="grey40")
bgb <- edge_apply(bgb, label.color="yellow")
## Set up the bar version
deb2_bar <- Animate(deb2, as.network=FALSE)
## Set up the line version
deb2_line <- plot(cumulative(deb2_bar))
## Generate a folder
loc2b <- folder(animation_polarity2)
## Set up the plotting function
oopt <- animation::ani.options(interval = 0.1)
FUN2 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc2b, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
uns <- unit(c(-1.3,.5,-.75,.25), "cm")
p <- deb2_bar[[i]] +
theme(plot.margin = uns,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black"))
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN2()
## Detect OS
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN2(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc2b, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN2(TRUE)
## Increased complexity
## --------------------
## Helper function to cbind ggplots
cbinder <- function(x, y){
uns_x <- unit(c(-1.3,.15,-.75,.25), "cm")
uns_y <- unit(c(-1.3,.5,-.75,.15), "cm")
x <- x + theme(plot.margin = uns_x,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
y <- y + theme(plot.margin = uns_y,
text=element_text(color="white"),
plot.background = element_rect(fill = "black",
color="black")
)
plots <- list(x, y)
grobs <- list()
heights <- list()
for (i in 1:length(plots)){
grobs[[i]] <- ggplotGrob(plots[[i]])
heights[[i]] <- grobs[[i]]$heights[2:5]
}
maxheight <- do.call(grid::unit.pmax, heights)
for (i in 1:length(grobs)){
grobs[[i]]$heights[2:5] <- as.list(maxheight)
}
do.call("arrangeGrob", c(grobs, ncol = 2))
}
deb2_combo <- Map(cbinder, deb2_bar, deb2_line)
## Generate a folder
loc3 <- folder(animation_polarity3)
FUN3 <- function(follow=FALSE, theseq = seq_along(bgb)) {
Title <- "Animated Polarity: 2012 Presidential Debate 2"
Legend <- c(.2, -1.075, 1.5, -1.005)
Legend.cex <- 1
lapply(theseq, function(i) {
if (follow) {
png(file=sprintf("%s/images/Rplot%s.png", loc3, i),
width=650, height=725)
}
## Set up the layout
layout(matrix(c(rep(1, 9), rep(2, 4)), 13, 1, byrow = TRUE))
## Plot 1
par(mar=c(2, 0, 2, 0), bg="black")
#par(mar=c(2, 0, 2, 0))
set.seed(20)
plot.igraph(bgb[[i]], edge.curved=TRUE)
mtext(Title, side=3, col="white")
color.legend(Legend[1], Legend[2], Legend[3], Legend[4],
c("Negative", "Neutral", "Positive"), attributes(bgb)[["legend"]],
cex = Legend.cex, col="white")
## Plot2
plot.new()
vps <- baseViewports()
p <- deb2_combo[[i]]
print(p,vp = vpStack(vps$figure,vps$plot))
animation::ani.pause()
if (follow) {
dev.off()
}
})
}
FUN3()
type <- if(.Platform$OS.type == "windows") shell else system
saveHTML(FUN3(), autoplay = FALSE, loop = TRUE, verbose = FALSE,
ani.height = 1000, ani.width=650,
outdir = loc3, single.opts =
"'controls': ['first', 'play', 'loop', 'speed'], 'delayMin': 0")
FUN3(TRUE)
##-----------------------------##
## Constraining between -1 & 1 ##
##-----------------------------##
## The old behavior of polarity constrained the output to be between -1 and 1
## this can be replicated via the `constrain = TRUE` argument:
polarity("really hate anger")
polarity("really hate anger", constrain=TRUE)
#==================#
## Static Network ##
#==================#
(poldat <- with(sentSplit(DATA, 4), polarity(state, person)))
m <- Network(poldat)
m
print(m, bg="grey97", vertex.color="grey75")
print(m, title="Polarity Discourse Map", title.color="white", bg="black",
legend.text.color="white", vertex.label.color = "grey70",
edge.label.color="yellow")
## or use themes:
dev.off()
m + qtheme()
m + theme_nightheat
dev.off()
m+ theme_nightheat(title="Polarity Discourse Map")
#===============================#
## CUMULATIVE POLARITY EXAMPLE ##
#===============================#
# Hedonometrics #
#===============================#
poldat4 <- with(rajSPLIT, polarity(dialogue, act, constrain = TRUE))
polcount <- na.omit(counts(poldat4)$polarity)
len <- length(polcount)
cummean <- function(x){cumsum(x)/seq_along(x)}
cumpolarity <- data.frame(cum_mean = cummean(polcount), Time=1:len)
## Calculate background rectangles
ends <- cumsum(rle(counts(poldat4)$act)$lengths)
starts <- c(1, head(ends + 1, -1))
rects <- data.frame(xstart = starts, xend = ends + 1,
Act = c("I", "II", "III", "IV", "V"))
library(ggplot2)
ggplot() + theme_bw() +
geom_rect(data = rects, aes(xmin = xstart, xmax = xend,
ymin = -Inf, ymax = Inf, fill = Act), alpha = 0.17) +
geom_smooth(data = cumpolarity, aes(y=cum_mean, x = Time)) +
geom_hline(y=mean(polcount), color="grey30", size=1, alpha=.3, linetype=2) +
annotate("text", x = mean(ends[1:2]), y = mean(polcount), color="grey30",
label = "Average Polarity", vjust = .3, size=3) +
geom_line(data = cumpolarity, aes(y=cum_mean, x = Time), size=1) +
ylab("Cumulative Average Polarity") + xlab("Duration") +
scale_x_continuous(expand = c(0,0)) +
geom_text(data=rects, aes(x=(xstart + xend)/2, y=-.04,
label=paste("Act", Act)), size=3) +
guides(fill=FALSE) +
scale_fill_brewer(palette="Set1")
# }
Run the code above in your browser using DataLab