Last chance! 50% off unlimited learning
Sale ends in
word_count
- Transcript apply word counts.
character_count
- Transcript apply character counts.
character_table
- Computes a table of character counts by grouping .
variable(s).
word_count(
text.var,
byrow = TRUE,
missing = NA,
digit.remove = TRUE,
names = FALSE
)wc(text.var, byrow = TRUE, missing = NA, digit.remove = TRUE, names = FALSE)
character_count(
text.var,
byrow = TRUE,
missing = NA,
apostrophe.remove = TRUE,
digit.remove = TRUE,
count.space = FALSE
)
character_table(
text.var,
grouping.var = NULL,
percent = TRUE,
prop.by.row = TRUE,
zero.replace = 0,
digits = 2,
...
)
char_table(
text.var,
grouping.var = NULL,
percent = TRUE,
prop.by.row = TRUE,
zero.replace = 0,
digits = 2,
...
)
word_count
- returns a word count by row or total.
character_count
- returns a character count by row or total.
character_table
- returns a list:
dataframe of character counts by grouping variable.
Dataframe of the frequency of characters by grouping variable.
Dataframe of the proportion of characters by grouping variable.
Dataframe of the frequency and proportions of characters by grouping variable.
The value of percent used for plotting purposes.
The value of zero.replace used for plotting purposes.
The text variable
logical. If TRUE
counts by row, if FALSE
counts
all words.
Value to insert for missing values (empty cells).
logical. If TRUE
removes digits before counting
words.
logical. If TRUE
the sentences are given as the names of
the counts.
logical. If TRUE
apostrophes will be counted
in the character count.
logical. If TRUE
spaces are counted as characters.
The grouping variables. Default NULL
generates
one word list for all text. Also takes a single grouping variable or a list
of 1 or more grouping variables.
logical. If TRUE
output given as percent. If
FALSE
the output is proportion.
logical. If TRUE
applies proportional to the row.
If FALSE
applies by column.
Value to replace 0 values with.
Integer; number of decimal places to round when printing.
Other arguments passed to prop
.
syllable_count
,
prop
,
colcomb2class
if (FALSE) {
## WORD COUNT
word_count(DATA$state)
wc(DATA$state)
word_count(DATA$state, names = TRUE)
word_count(DATA$state, byrow=FALSE, names = TRUE)
sum(word_count(DATA$state))
sapply(split(raj$dialogue, raj$person), wc, FALSE) %>%
sort(decreasing=TRUE) %>%
list2df("wordcount", "person") %>%
`[`(, 2:1)
## PLOT WORD COUNTS
raj2 <- raj
raj2$scaled <- unlist(tapply(wc(raj$dialogue), raj2$act, scale))
raj2$scaled2 <- unlist(tapply(wc(raj$dialogue), raj2$act, scale, scale = FALSE))
raj2$ID <- factor(unlist(tapply(raj2$act, raj2$act, seq_along)))
ggplot(raj2, aes(x = ID, y = scaled, fill =person)) +
geom_bar(stat="identity") +
facet_grid(act~.) +
ylab("Scaled") + xlab("Turn of Talk") +
guides(fill = guide_legend(nrow = 5, byrow = TRUE)) +
theme(legend.position="bottom") +
ggtitle("Scaled and Centered")
ggplot(raj2, aes(x = ID, y = scaled2, fill =person)) +
geom_bar(stat="identity") +
facet_grid(act~.) +
ylab("Scaled") + xlab("Turn of Talk") +
guides(fill = guide_legend(nrow = 5, byrow = TRUE)) +
theme(legend.position="bottom") +
ggtitle("Mean Difference")
raj$wc <- wc(raj$dialogue)
raj$cum.wc <- unlist(with(raj, tapply(wc, act, cumsum)))
raj$turn <- unlist(with(raj, tapply(act, act, seq_along)))
ggplot(raj, aes(y=cum.wc, x=turn)) +
geom_step(direction = "hv") +
facet_wrap(~act)
## CHARACTER COUNTS
character_count(DATA$state)
character_count(DATA$state, byrow=FALSE)
sum(character_count(DATA$state))
## CHARACTER TABLE
x <- character_table(DATA$state, DATA$person)
plot(x)
plot(x, label = TRUE)
plot(x, label = TRUE, text.color = "red")
plot(x, label = TRUE, lab.digits = 1, zero.replace = "PP7")
scores(x)
counts(x)
proportions(x)
plot(scores(x))
plot(counts(x))
plot(proportions(x))
## combine columns
colcomb2class(x, list(vowels = c("a", "e", "i", "o", "u")))
## char_table(DATA$state, DATA$person)
## char_table(DATA$state, DATA$person, percent = TRUE)
## character_table(DATA$state, list(DATA$sex, DATA$adult))
library(ggplot2);library(reshape2)
dat <- character_table(DATA$state, list(DATA$sex, DATA$adult))
dat2 <- colsplit2df(melt(counts(dat)), keep.orig = TRUE)
head(dat2, 15)
ggplot(data = dat2, aes(y = variable, x = value, colour=sex)) +
facet_grid(adult~.) +
geom_line(size=1, aes(group =variable), colour = "black") +
geom_point()
ggplot(data = dat2, aes(x = variable, y = value)) +
geom_bar(aes(fill = variable), stat = "identity") +
facet_grid(sex ~ adult, margins = TRUE) +
theme(legend.position="none")
}
Run the code above in your browser using DataLab