Learn R Programming

qfratio (version 1.1.1)

hgs: Calculate hypergeometric series

Description

These internal functions calculate (summands of) hypergeometric series.

hgs_1d() calculates the hypergeometric series \(c \frac{(a_1)_i}{(b)_i} d_{i}\)

hgs_2d() calculates the hypergeometric series \(c \frac{(a_1)_i (a_2)_j}{(b)_{i+j}} d_{i, j}\)

hgs_3d() calculates the hypergeometric series \(c \frac{(a_1)_i (a_2)_j (a_3)_k}{(b)_{i+j+k}} d_{i, j, k}\)

Usage

hgs_1d(dks, a1, b, lconst = 0)

hgs_2d(dks, a1, a2, b, lconst = 0)

hgs_3d(dks, a1, a2, a3, b, lconst = 0)

Value

Numeric with the same dimension with dks

Arguments

dks

(m + 1) vector for \(d_{i}\), (m + 1) * (m + 1) square matrix for \(d_{i,j}\), or (m + 1) * (m + 1) * (m + 1) array for \(d_{i,j,k}\) (\(i, j, k = 0, 1, \dots m\))

a1, a2, a3

Numerator parameters

b

Denominator parameter

lconst

Scalar \(\log c\)

Details

The denominator parameter b is assumed positive, whereas the numerator parameters can be positive or negative. The signs of the latter will be reflected in the result.