These internal functions calculate (summands of) hypergeometric series.
hgs_1d()
calculates the hypergeometric series
\(c \frac{(a_1)_i}{(b)_i} d_{i}\)
hgs_2d()
calculates the hypergeometric series
\(c \frac{(a_1)_i (a_2)_j}{(b)_{i+j}} d_{i, j}\)
hgs_3d()
calculates the hypergeometric series
\(c \frac{(a_1)_i (a_2)_j (a_3)_k}{(b)_{i+j+k}} d_{i, j, k}\)
hgs_1d(dks, a1, b, lconst = 0)hgs_2d(dks, a1, a2, b, lconst = 0)
hgs_3d(dks, a1, a2, a3, b, lconst = 0)
Numeric with the same dimension with dks
(m + 1)
vector for \(d_{i}\),
(m + 1) * (m + 1)
square matrix for \(d_{i,j}\), or
(m + 1) * (m + 1) * (m + 1)
array for \(d_{i,j,k}\)
(\(i, j, k = 0, 1, \dots m\))
Numerator parameters
Denominator parameter
Scalar \(\log c\)
The denominator parameter b
is assumed positive,
whereas the numerator parameters can be positive or negative. The signs
of the latter will be reflected in the result.