## Not run:
# ### Using bfi dataset from psych ###
# library("psych")
# data(bfi)
#
# ### CORRELATIONS ###
# # Compute correlations:
# CorMat <- cor_auto(bfi[,1:25])
#
# # Run local FDR:
# CorMat_FDR <- FDRnetwork(CorMat)
#
# # Number of edges remaining:
# mean(CorMat_FDR[upper.tri(CorMat_FDR,diag=FALSE)]!=0)
#
# # None, so might use different criterion:
# CorMat_FDR <- FDRnetwork(CorMat, method = "pval")
#
#
# # Compare:
# L <- averageLayout(CorMat, CorMat_FDR)
#
# layout(t(1:2))
# qgraph(CorMat, layout = L, title = "Correlation network",
# maximum = 1, cut = 0.1, minimum = 0, esize = 20)
# qgraph(CorMat_FDR, layout = L, title = "Local FDR correlation network",
# maximum = 1, cut = 0.1, minimum = 0, esize = 20)
#
# # Centrality:
# centralityPlot(list(cor=CorMat, fdr = CorMat_FDR))
#
#
# ### PARTIAL CORRELATIONS ###
# # Partial correlation matrix:
# library("parcor")
# PCorMat <- cor2pcor(CorMat)
#
# # Run local FDR:
# PCorMat_FDR <- FDRnetwork(PCorMat, cutoff = 0.1, method = "pval")
#
# # Number of edges remaining:
# mean(PCorMat_FDR[upper.tri(PCorMat_FDR,diag=FALSE)]!=0)
#
# # Compare:
# L <- averageLayout(PCorMat, PCorMat_FDR)
#
# layout(t(1:2))
# qgraph(PCorMat, layout = L, title = "Partial correlation network",
# maximum = 1, cut = 0.1, minimum = 0, esize = 20)
# qgraph(PCorMat_FDR, layout = L, title = "Local FDR partial correlation network",
# maximum = 1, cut = 0.1, minimum = 0, esize = 20)
#
# # Centrality:
# centralityPlot(list(cor=PCorMat, fdr = PCorMat_FDR))
# ## End(Not run)
Run the code above in your browser using DataLab