## Not run:
#
# require('sem')
#
# # This example is taken from the examples of the sem function.
# # Only names were changed to better suit the path diagram.
#
# # ----------------------- Thurstone data ---------------------------------------
# # Second-order confirmatory factor analysis, from the SAS manual for PROC CALIS
#
# R.thur <- readMoments(diag=FALSE, names=c('Sen','Voc',
# 'SC','FL','4LW','Suf',
# 'LS','Ped', 'LG'))
# .828
# .776 .779
# .439 .493 .46
# .432 .464 .425 .674
# .447 .489 .443 .59 .541
# .447 .432 .401 .381 .402 .288
# .541 .537 .534 .35 .367 .32 .555
# .38 .358 .359 .424 .446 .325 .598 .452
#
# model.thur <- specifyModel()
# F1 -> Sen, *l11, NA
# F1 -> Voc, *l21, NA
# F1 -> SC, *l31, NA
# F2 -> FL, *l41, NA
# F2 -> 4LW, *l52, NA
# F2 -> Suf, *l62, NA
# F3 -> LS, *l73, NA
# F3 -> Ped, *l83, NA
# F3 -> LG, *l93, NA
# F4 -> F1, *g1, NA
# F4 -> F2, *g2, NA
# F4 -> F3, *g3, NA
# Sen <-> Sen, q*1, NA
# Voc<-> Voc, q*2, NA
# SC <-> SC, q*3, NA
# FL <-> FL, q*4, NA
# 4LW <-> 4LW, q*5, NA
# Suf<-> Suf, q*6, NA
# LS <-> LS, q*7, NA
# Ped<-> Ped, q*8, NA
# LG <-> LG, q*9, NA
# F1 <-> F1, NA, 1
# F2 <-> F2, NA, 1
# F3 <-> F3, NA, 1
# F4 <-> F4, NA, 1
#
#
#
# # Run qgraph:
# qgraph(model.thur)
#
# # Tree layout:
# qgraph(model.thur,layout="tree",manifest=c('Sen','Voc','SC','FL','4LW','Suf','LS','Ped', 'LG'))
#
# ## End(Not run)
Run the code above in your browser using DataLab