Learn R Programming

qkerntool (version 1.19)

qkgda-class: Class "qkgda"

Description

The qkernel Generalized Discriminant Analysis class

Arguments

Objects of class "qkgda"

Objects can be created by calls of the form new("qkgda", ...). or by calling the qkgda function.

Slots

prj:

Object of class "matrix" containing the normalized projections on eigenvectors

eVal:

Object of class "matrix" containing the corresponding eigenvalues

eVec:

Object of class "matrix" containing the corresponding eigenvectors

label:

Object of class "matrix" containing the categorical variables that the categorical data be assigned to one of the categories

Methods

prj

signature(object = "qkgda"): returns the normalized projections

eVal

signature(object = "qkgda"): returns the eigenvalues

eVec

signature(object = "qkgda"): returns the eigenvectors

kcall

signature(object = "qkgda"): returns the performed call

cndkernf

signature(object = "qkgda"): returns the used kernel function

predict

signature(object = "qkgda"): embeds new data

xmatrix

signature(object = "qkgda"): returns the used data matrix

See Also

qkernel-class, cndkernel-class

Examples

Run this code
# NOT RUN {
Iris <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]), Sp = rep(c("1","2","3"), rep(50,3)))
testset <- sample(1:150,20)
train <- as.matrix(iris[-testset,-5])
test <- as.matrix(iris[testset,-5])
Sp = rep(c("1","2","3"), rep(50,3))
labels <-as.numeric(Sp)
trainlabel <- labels[-testset]
testlabel <- labels[testset]

kgda1 <- qkgda(train, label=trainlabel, kernel = "ratibase", qpar = list(c=1,q=0.9),features = 2)

prj(kgda1)
eVal(kgda1)
eVec(kgda1)
cndkernf(kgda1)
kcall(kgda1)
# }

Run the code above in your browser using DataLab