Usage
"qpEdgeNrr"(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, R.code.only=FALSE)
Arguments
X
data set from where the non-rejection rate should be estimated. It
can be either an ExpressionSet
object a
data frame, a matrix or an SsdMatrix-class
object. In the
latter case, the input matrix should correspond to a sample covariance matrix
of data from which we want to estimate the non-rejection rate for a pair of
variables. The function qpCov()
can be used to estimate such
matrices. i
index or name of one of the two variables in X
to test.
j
index or name of the other variable in X
to test.
q
order of the conditioning subsets employed in the calculation.
I
indexes or names of the variables in X
that are discrete
when X
is a matrix or a data frame.
restrict.Q
indexes or names of the variables in X
that
restrict the sample space of conditioning subsets Q.
fix.Q
indexes or names of the variables in X
that should be
fixed within every conditioning conditioning subsets Q.
nTests
number of tests to perform for each pair for variables.
alpha
significance level of each test.
long.dim.are.variables
logical; if TRUE it is assumed
that when data are in a data frame or in a matrix, the longer dimension
is the one defining the random variables (default); if FALSE, then random
variables are assumed to be at the columns of the data frame or matrix.
exact.test
logical; if FALSE
an asymptotic conditional independence
test is employed with mixed (i.e., continuous and discrete) data;
if TRUE
(default) then an exact conditional independence test with
mixed data is employed.See details below regarding this argument.
use
a character string defining the way in which calculations are done in the
presence of missing values. It can be either "complete.obs"
(default)
or "em"
.
tol
maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em"
.
R.code.only
logical; if FALSE then the faster C implementation is used
(default); if TRUE then only R code is executed.