Usage
"qpEdgeNrr"(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, long.dim.are.variables=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
"qpEdgeNrr"(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, R.code.only=FALSE)
Arguments
X
data set from where the non-rejection rate should be estimated. It
can be either an ExpressionSet object a
data frame, a matrix or an SsdMatrix-class object. In the
latter case, the input matrix should correspond to a sample covariance matrix
of data from which we want to estimate the non-rejection rate for a pair of
variables. The function qpCov() can be used to estimate such
matrices. i
index or name of one of the two variables in X to test.
j
index or name of the other variable in X to test.
q
order of the conditioning subsets employed in the calculation.
I
indexes or names of the variables in X that are discrete
when X is a matrix or a data frame.
restrict.Q
indexes or names of the variables in X that
restrict the sample space of conditioning subsets Q.
fix.Q
indexes or names of the variables in X that should be
fixed within every conditioning conditioning subsets Q.
nTests
number of tests to perform for each pair for variables.
alpha
significance level of each test.
long.dim.are.variables
logical; if TRUE it is assumed
that when data are in a data frame or in a matrix, the longer dimension
is the one defining the random variables (default); if FALSE, then random
variables are assumed to be at the columns of the data frame or matrix.
exact.test
logical; if FALSE an asymptotic conditional independence
test is employed with mixed (i.e., continuous and discrete) data;
if TRUE (default) then an exact conditional independence test with
mixed data is employed.See details below regarding this argument.
use
a character string defining the way in which calculations are done in the
presence of missing values. It can be either "complete.obs" (default)
or "em".
tol
maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".
R.code.only
logical; if FALSE then the faster C implementation is used
(default); if TRUE then only R code is executed.