Usage
"qpNrr"(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
"qpNrr"(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
"qpNrr"(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
"qpNrr"(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE, clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)
Arguments
X
data set from where to estimate the non-rejection rates.
It can be an ExpressionSet
object, a qtl/cross
object,
a data.frame
object or a matrix
object.
q
partial-correlation order to be employed.
I
indexes or names of the variables in X
that are discrete.
See details below regarding this argument.
restrict.Q
indexes or names of the variables in X
that
restrict the sample space of conditioning subsets Q.
fix.Q
indexes or names of the variables in X
that should be
fixed within every conditioning conditioning subsets Q.
nTests
number of tests to perform for each pair for variables.
alpha
significance level of each test.
pairup.i
subset of vertices to pair up with subset pairup.j
pairup.j
subset of vertices to pair up with subset pairup.i
long.dim.are.variables
logical; if TRUE
it is assumed
that when data are in a data frame or in a matrix, the longer dimension
is the one defining the random variables (default); if FALSE
, then
random variables are assumed to be at the columns of the data frame or matrix.
verbose
show progress on the calculations.
identicalQs
use identical conditioning subsets for every pair of vertices
(default), otherwise sample a new collection of nTests
subsets for
each pair of vertices.
exact.test
logical; if FALSE
an asymptotic conditional independence
test is employed with mixed (i.e., continuous and discrete) data;
if TRUE
(default) then an exact conditional independence test with
mixed data is employed. See details below regarding this argument.
use
a character string defining the way in which calculations are done in the
presence of missing values. It can be either "complete.obs"
(default)
or "em"
.
tol
maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em"
.
R.code.only
logical; if FALSE
then the faster C implementation is used
(default); if TRUE
then only R code is executed.
clusterSize
size of the cluster of processors to employ if we wish to
speed-up the calculations by performing them in parallel. A value of 1
(default) implies a single-processor execution. The use of a cluster of
processors requires having previously loaded the packages snow
and rlecuyer
.
estimateTime
logical; if TRUE
then the time for carrying out the
calculations with the given parameters is estimated by calculating for a
limited number of adjacencies, specified by nAdj2estimateTime
, and
extrapolating the elapsed time; if FALSE
(default) calculations are
performed normally till they finish.
nAdj2estimateTime
number of adjacencies to employ when estimating the
time of calculations (estimateTime=TRUE
). By default this has a
default value of 10 adjacencies and larger values should provide more
accurate estimates. This might be relevant when using a cluster facility.