Learn R Programming

qrcm (version 3.1)

internals: Internal Functions

Description

Functions for internal use only, or not yet documented.

Usage

check.in.iqr(mf, formula.p, s)
check.in0.iqrL(mf1, mf2)
check.in.iqrL(mf, y,w,formula.p, s)
check.out(theta, S, covar)
start.iqr(y,z,d, x, weights, bfun, df, yy, zz, s, type = "ctiqr")
start.iqrL(y,x,z,id, w1,w2, bfun1,bfun2, s.theta,s.phi, S1,S2)

ctiqr.internal(mf, cl, formula.p, tol = 1e-06, maxit, s, remove.qc) iqrL.internal(mf1, mf2, cl, fu,fv, s.theta, s.phi, tol = 1e-5, maxit) iqrL.fit(theta,phi, y,alpha, x,xw,z,zw, id, w1,w2, bfun1,bfun2, s.theta, s.phi, maxit.theta, safeit.theta, maxit.phi, safeit.phi, eps, tol, maxit)

iqr.ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z, J = TRUE, G, i = FALSE, lambda = 0) ciqr.ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z, J = TRUE, G, i = FALSE, lambda = 0) ctiqr.ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z, J = TRUE, G, i = FALSE, lambda = 0) iciqr.ee(theta, y, z, d, X, Xw, bfun, p.star.y, p.star.z, J = TRUE, G, i = FALSE, lambda = 0) iobjfun(theta, y, X, weights, bfun, p.star) iobjfun.ct(theta, z,y,d,X,weights, bfun, py, pz, type) iobjfun.ic(fit, V, bfun)

cov.fun.iqr(theta, y, z, d, X, Xw, weights, bfun, p.star.y, p.star.z, type, s)

iqrL.ee(par, x,xw, bfun, p, g = TRUE, H = TRUE, i = FALSE) cov.fun.iqrL(fit, x,xw,z,zw, id, w1,w2, bfun1,bfun2, s.theta, s.phi)

iqr.newton(theta, y,z,d,X,Xw, bfun, s, type, tol, maxit, safeit, eps0, lambda = 0) divide.et.impera(fit, V, bfun, s, type, tol, maxit, safeit, eps0, lambda = 0) iqrL.newton(par, y,x,xw, bfun, s, tol, maxit, safeit, eps)

pmax0(x) maxind(A) num.fun(dx,fx, op = c("int", "der")) make.bfun(p, x) apply_bfun(bfun, p, fun = c("bfun", "b1fun")) p.bisec(theta, y, X, bfun, n.it = 20) p.bisec.internal(theta, y,X,bp) slp.basis(k, intercept) is.slp(f) safesolve(A,B,lambda) middlepoint(y)

iqr.waldtest(obj) extract.p(model, p, cov = FALSE) pred.beta(model, p, se = FALSE)

km(z,y,d,w, type, exclude = NULL) alpha(obj, mz, mc, k = 98, zcmodel, Tc, Tz) test.unif.ct(z,y,d,w, type, exclude = 0.05) findagoodestimator(dat, w, type = "ctiqr") quickpred(obj, y, type = c("PDF", "SF")) trans(z,y,d,w,type) fitgamma(y,X,w)

alpha.bisec(theta,phi,y,x,z,id,w1,w2,bfun1,bfun2, long = FALSE) alpha.bisec.out(A, theta,phi,y,x,z,id,w1,w2,bfun1,bfun2, long = FALSE) ks(u,v,id,w1,w2, K = 25)

# S3 method for iqr print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for summary.iqr print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for iqr terms(x, ...) # S3 method for iqr model.matrix(object, ...) # S3 method for iqr vcov(object, ...) # S3 method for iqr nobs(object, ...)

predict_iqrL.internal(object, level, type = c("coef", "CDF", "QF", "sim"), newdata, p, se = FALSE, ...) # S3 method for iqrL print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for summary.iqrL print(x, digits = max(3L, getOption("digits") - 3L), ...) # S3 method for iqrL terms(x, ...) # S3 method for iqrL model.matrix(object, ...) # S3 method for iqrL vcov(object, ...) # S3 method for iqrL nobs(object, ...)

qc.penalty(theta, X, bfun, lambda, pen, H) fixqc(fit, V, bfun, s, type, tol, maxit, safeit, eps0, lambda, r, maxTry, trace, count, pcross = NULL) # S3 method for qc.iqr print(x, ...)

Arguments