# using simulated data
n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id
x1 <- runif(n) # a level-1 covariate
z1 <- rnorm(n.id) # a level-2 covariate
V <- runif(n.id) # V_i
U <- runif(n) # U_it
alpha <- 2*(V - 1) + z1 # alpha
y_alpha <- 1 + 2*qnorm(U) + 3*U*x1 # y - alpha
y <- y_alpha + alpha[id] # observed outcome
mydata <- data.frame(id = id, y = y, x1 = x1, z1 = z1[id])
model <- iqrL(fx = y ~ x1, fu = ~ I(qnorm(u)) + u,
fz = ~ z1, fv = ~ -1 + I(qnorm(v)), id = id, data = mydata)
par(mfrow = c(2,2))
plot(model, ask = FALSE)
Run the code above in your browser using DataLab