# using simulated data
n <- 1000 # n. of observations
n.id <- 100 # n. of clusters
id <- rep(1:n.id, each = n/n.id) # cluster id
x <- rexp(n) # a covariate
V <- runif(n.id) # V_i
U <- runif(n) # U_it
y <- 1 + 2*log(U) + 3*x + 0.5*qnorm(V)
# true quantile function: Q(u,v | x) = beta0(u) + beta1(u)*x + gamma0(v), with
# beta0(u) = 1 + 2*log(u)
# beta1(u) = 3
# gamma0(v) = 0.5*qnorm(v)
model <- iqrL(fx = y ~ x, fu = ~ 1 + I(log(u)), fz = ~ 1, fv = ~ -1 + I(qnorm(v)), id = id)
summary(model)
summary(model, level = 1, p = c(0.25, 0.75)) # summary of beta(u) at selected quantiles
summary(model, level = 2, p = c(0.1, 0.9)) # summary of gamma(v) at selected quantiles
Run the code above in your browser using DataLab