# using simulated data
n <- 300
x <- runif(n)
fun <- function(theta, p){
beta0 <- theta[1] + exp(theta[2]*p)
beta1 <- theta[3] + theta[4]*p
cbind(beta0, beta1)}
beta <- fun(c(1,1,1,1), runif(n))
y <- beta[, 1] + beta[, 2]*x
model <- niqr(fun=fun, x0=rep(0, 4), X=cbind(1,x), y=y)
# predict beta(0.25), beta(0.5), beta(0.75)
predict(model, type = "beta", p = c(0.25,0.5, 0.75))
# predict the CDF and the PDF at new values of x and y
predict(model, type = "CDF",
newdata = data.frame(X1=runif(3), y = c(1,2,3)))
# computes the quantile function at new x, for p = (0.25,0.5,0.75)
predict(model, type = "QF", p = c(0.25,0.5,0.75),
newdata = data.frame(X1=runif(3), y = c(1,2,3)))
# simulate data from the fitted model
ysim <- predict(model, type = "sim") # 'newdata' can be supplied
# if the model is correct, the distribution of y and that of ysim should be similar
qy <- quantile(y, prob = seq(.1,.9,.1))
qsim <- quantile(ysim, prob = seq(.1,.9,.1))
plot(qy, qsim); abline(0,1)
Run the code above in your browser using DataLab