data(fake.f2)
# take out several QTLs and make QTL object
qc <- c(1, 8, 13)
qp <- c(26, 56, 28)
fake.f2 <- subset(fake.f2, chr=qc)
fake.f2 <- subset(fake.f2, ind=1:50)
fake.f2 <- sim.geno(fake.f2, n.draws=8, step=2, err=0.001)
qtl <- makeqtl(fake.f2, qc, qp)
# fit model with 3 interacting QTLs interacting
# (performing a drop-one-term analysis)
lod <- fitqtl(fake.f2$pheno[,1], qtl, formula=y~Q1*Q2*Q3)
summary(lod)
# fit an additive QTL model
lod.add <- fitqtl(fake.f2$pheno[,1], qtl, formula=y~Q1+Q2+Q3)
summary(lod.add)
# fit the model including sex as an interacting covariate
Sex <- data.frame(Sex=fake.f2$pheno$sex)
lod.sex <- fitqtl(fake.f2$pheno[,1], qtl, formula=y~Q1*Q2*Q3*Sex, cov=Sex)
summary(lod.sex)
# fit the same with an additive model
lod.sex.add <- fitqtl(fake.f2$pheno[,1], qtl, formula=y~Q1+Q2+Q3+Sex, cov=Sex)
summary(lod.sex.add)
Run the code above in your browser using DataLab