## S3 method for class 'scantwo':
plot(x, chr, incl.markers=FALSE, zlim,
lower=c("joint","add","cond-int","cond-add"), nodiag=TRUE,
contours=FALSE, main, zscale=TRUE, point.at.max=FALSE,
col.scheme = c("redblue","cm","gray","heat","terrain","topo"),
gamma=1, ...)
"scantwo"
, as output by
scantwo
.contour
. If a
numeric vector, contours are drawn at these values below the maximum
LOD.col.scheme="gray"
or ="redblue"
.image
to plot a grid of LOD scores. The
upper triangle contains the epistasis LOD scores; the content in the
lower triangle depends on the input argument lower
.
The diagonal contains either all zeros or the main effects LOD scores
(from scanone
). The scantwo
function calculates, for each pair of
putative QTLs, $(q_1,q_2)$, the likelihood undering the
null model $L_0$, the likelihood under each of the single-QTL
models, $L(q_1)$ and $L(q_2)$, the likelihood
under an additive QTL model, $L_a(q_1,q_2)$, and the
likelihood under a full QTL model (including QTL-QTL interaction),
$L_f(q_1,q_2)$.
The upper triangle in plot from this function contains the epistasis
LOD scores, $LOD_i = \log_{10} L_f(q_1,q_2) - \log_{10} L_a(q_1,q_2)$.
If lower="joint"
, the lower triangle will contain the joint LOD
scores, $LOD_j = \log_{10} L_f(q_1,q_2) - \log_{10} L_0$.
If lower="add"
, the lower triangle will contain the additive
LOD scores, $LOD_a = \log_{10} L_a(q_1,q_2) - \log_{10} L_0$.
If lower="cond-int"
, the lower triangle will contain LOD scores
comparing the two-QTL joint likelihood to the best of the single-QTL models,
$LOD_{ci} = \log_{10} L_f(q_1,q_2) - \log_{10} \max(L(q_1), L(q_2))$.
If lower="cond-add"
, the lower triangle will contain LOD scores
comparing the two-QTL additive likelihood to the best of the single-QTL models,
$LOD_{ca} = \log_{10} L_a(q_1,q_2) - \log_{10} \max(L(q_1), L(q_2))$.
If a color scale is plotted (zscale=TRUE
), the axis on the
left indicates the scale for the epistasis LOD scores (the upper
triangle), while the axis on the right indicates the scale for the
lower triangle. Note that the axis labels get screwed up
if you change the size of the figure window; you'll need to redo the
plot.
scantwo
,
summary.scantwo
, plot.scanone
data(fake.f2)
fake.f2 <- calc.genoprob(fake.f2, step=5)
out.2dim <- scantwo(fake.f2, method="hk", chr=c(1,8,13,14))
plot(out.2dim)
plot(out.2dim, nodiag=FALSE)
plot(out.2dim, lower="joint", nodiag=FALSE)
Run the code above in your browser using DataLab