data(map10) # Genetic map modeled after mouse
# simulate a cross (autosomes 1-10)
qtl <- c(3,15,1,0) # QTL model: chr, pos'n, add've & dom effects
cross <- sim.cross(map10[1:10],qtl,n=100,missing.prob=0.01)
# MQM
crossaug <- mqmaugment(cross) # Augmentation
cat(crossaug$mqm$Nind,'real individuals retained in dataset',
crossaug$mqm$Naug,'individuals augmented<n>')
result <- mqmscan(crossaug) # Scan
# show LOD interval of the QTL on chr 3
lodint(result,chr=3)</n>
<references><ul>% \input{"inst/docs/Sources/MQM/mqm/standard_references.txt"}<li>Arends D, Prins P, Jansen RC. R/qtl: High-throughput multiple QTL mapping.<em>Bioinformatics</em>, to appear</li><li>Jansen RC, (2007) Quantitative trait loci in inbred lines. Chapter 18 of<em>Handbook of Stat. Genetics</em>3rd edition. John Wiley & Sons, Ltd.</li><li>Jansen RC, Nap JP (2001), Genetical genomics: the added value from segregation.<em>Trends in Genetics</em>,<b>17</b>, 388--391.</li><li>Jansen RC, Stam P (1994), High resolution of quantitative traits into multiple loci via interval mapping.<em>Genetics</em>,<b>136</b>, 1447--1455.</li><li>Jansen RC (1993), Interval mapping of multiple quantitative trait loci.<em>Genetics</em>,<b>135</b>, 205--211.</li><li>Swertz MA, Jansen RC. (2007), Beyond standardization: dynamic software infrastructures for systems biology.<em>Nat Rev Genet.</em><b>3</b>, 235--243.</li><li>Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm.<em>J. Roy. Statist. Soc.</em>B,<b>39</b>, 1--38.
% -----^^ inst/docs/Sources/MQM/mqm/standard_references.txt ^^-----</li></ul></references>
<keyword>models</keyword>Run the code above in your browser using DataLab