mqmplot.clusteredheatmap(cross, mqmresult, directed=TRUE, legend=FALSE, Colv=NA, scale="none", verbose=FALSE, breaks = c(-100,-10,-3,0,3,10,100), col = c("darkblue","blue","lightblue","yellow", "orange","red"), ...)
cross
. See read.cross
for details.
mqmmulti
heatmap
.MQM
- MQM description and references
mqmscan
- Main MQM single trait analysis
mqmscanall
- Parallellized traits analysis
mqmaugment
- Augmentation routine for estimating missing data
mqmautocofactors
- Set cofactors using marker density
mqmsetcofactors
- Set cofactors at fixed locations
mqmpermutation
- Estimate significance levels
scanone
- Single QTL scanning
data(multitrait)
multitrait <- fill.geno(multitrait) # impute missing genotype data
result <- mqmscanall(multitrait, logtransform=TRUE)
cresults <- mqmplot.clusteredheatmap(multitrait,result)
groupclusteredheatmap(multitrait,cresults,10)
Run the code above in your browser using DataLab