Wrapper routine for simulations
sim.hotspot(nSim, cross, n.pheno, latent.eff, res.var = 1, n.quant, n.perm,
alpha.levels, lod.thrs, drop.lod = 1.5, verbose = FALSE)
mySimulations(…)
sim.null.cross(chr.len = rep(400, 16), n.mar = 185, n.ind = 112,
type = "bc", n.pheno = 6000, latent.eff = 1.5, res.var = 1,
init.seed = 92387475)
sim.null.pheno.data(cross, n.pheno, latent.eff, res.var)
include.hotspots(cross, hchr, hpos, hsize, Q.eff, latent.eff,
lod.range.1, lod.range.2, lod.range.3, res.var=1, n.pheno, init.seed)
Number of simulated sets of phenotypes to create. See details.
Object of class cross
. See read.cross
.
Number of traits, or phenotypes, to simulate for cross object.
Strength of latent effect, which is included in all traits. See sim.null.cross
.
Residual variance for traits. Should not affect results.
maximum size of hotspots examined; ideally large enough to exceed the largest Breitling alpha critical value.
Number of permutations to perform per realization. Good idea to do 1000, but this takes time.
Vector of significance levels.
Vector of LOD thresholds, typically single-trait permutation thresholds for various significance levels.
Drop in LOD score examined. LODs below this drop from the maximum for a chromosome will not be scored.
initial seed for pseudo-random number generation
vector of chromosome lengths
number of markers
number of individuals
type of cross
vectors for hotspot chromosomes, positions, and sizes
QTL effect
2-vectors of LOD ranges for multiple purposes
Verbose output if TRUE
. More detailed output if 2
.
Arguments passed directly to sim.hotspot
.
sim.null.cross
simulates an object of class cross
.
sim.null.pheno.data
simulates a data frame of phenotypes.
sim.hotspot
uses these other routines to simulate a hotspot,
returning an list object.
Simulate nSim
realizations of cross object with n.pheno
phenotypes with correlation
latent.eff
. All simulations use the same genotypes in the
cross
object.
# NOT RUN {
ncross1 <- sim.null.cross(chr.len = rep(100, 4),
n.mar = 51,
n.ind = 100,
type = "bc",
n.phe = 1000,
latent.eff = 3,
res.var = 1,
init.seed = 123457)
cross1 <- include.hotspots(cross = ncross1,
hchr = c(2, 3, 4),
hpos = c(25, 75, 50),
hsize = c(100, 50, 20),
Q.eff = 2,
latent.eff = 3,
lod.range.1 = c(2.5, 2.5),
lod.range.2 = c(5, 8),
lod.range.3 = c(10, 15),
res.var = 1,
n.phe = 1000,
init.seed = 12345)
# }
Run the code above in your browser using DataLab