Learn R Programming

qtlmt (version 0.1-3)

mStep: Model selection in multivariate multiple regression

Description

Select a multivariate multiple regression model via model selection.

Usage

mStep(object, scope, direction=c("both","backward","forward"),
   trace=FALSE, keep=TRUE, steps=1000, k=2, ...)

Arguments

object
initial model in model search.
scope
a single formula, which provides `upper', or a list containing components `upper' and `lower', both formulae; defines the lower and upper bound. See step.
direction
forward selection, backward elimination or stepwise.
trace
whether to track the process for monitoring purpose.
keep
whether to return the change of terms and related statistics.
steps
maximum number of search steps.
k
penalty on a parameter. The selection criterion is the known "AIC" if k = 2 and is "BIC" if k = log(n) where "n" is the sample size.
...
additional arguments to update.

Value

  • a list with components of a lm object plus `keep' if required.

See Also

mAdd1 and mDrop1

Examples

Run this code
data(etrait)
mdf<- data.frame(traits,markers)
mlm<- lm(cbind(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16) ~
   m1 + m2 + m3 + m4 + m5, data=mdf)

lw<- formula(paste("~ ", paste("m",1:3,collapse=" + ",sep="")))
up<- formula(paste("~", paste("m",1:15,collapse=" + ",sep="")))

ob<- mStep(mlm, scope=list(lower=lw), k=99, direction="backward", data=mdf)
of<- mStep(mlm, scope=list(upper=up), k=5, direction="forward", data=mdf)
o1<- mStep(mlm, scope=list(upper=up), k=5, direction="both", data=mdf)
o2<- mStep(o1, scope=list(upper=up), k=2, direction="forward", data=mdf)

Run the code above in your browser using DataLab