## Not run:
# ## Simulating multivariate Gaussian with blockwise correlation
# ## and piecewise constant vector of parameters
# beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
# Soo <- matrix(0.75,25,25) ## bloc correlation between zero variables
# Sww <- matrix(0.75,10,10) ## bloc correlation between active variables
# Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.2
# diag(Sigma) <- 1
# n <- 100
# x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
# y <- 10 + x %*% beta + rnorm(n,0,10)
#
# ## Build a vector of label for true nonzeros
# labels <- rep("irrelevant", length(beta))
# labels[beta != 0] <- c("relevant")
# labels <- factor(labels, ordered=TRUE, levels=c("relevant","irrelevant"))
#
# ## Call to stability selection function, 200 subsampling
# stab <- stability(x,y, subsamples=200, lambda2=1, min.ratio=1e-2)
#
# ## Build the plot an recover the selected variable
# plot(stab, labels=labels)
# plot(stab, xvar="fraction", labels=labels, sel.mode="PFER", cutoff=0.75, PFER=2)
# ## End(Not run)
Run the code above in your browser using DataLab