# load and format reference data
stl <- stLouis
stl <- dplyr::mutate(stl, TRACTCE = as.numeric(TRACTCE))
# create clusters
cluster1 <- qm_define(118600, 119101, 119300)
cluster2 <- qm_define(119300, 121200, 121100)
# create cluster objects
cluster_obj1 <- qm_create(ref = stl, key = TRACTCE, value = cluster1,
rid = 1, cid = 1, category = "positive")
cluster_obj2 <- qm_create(ref = stl, key = TRACTCE, value = cluster2,
rid = 1, cid = 2, category = "positive")
# combine cluster objects
clusters <- qm_combine(cluster_obj1, cluster_obj2)
# summarize cluster objects
positive1 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
count = "clusters")
class(positive1)
mean(positive1$positive)
# summarize cluster objects with NA's instead of 0's
positive2 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
count = "clusters", use.na = TRUE)
class(positive2)
mean(positive2$positive, na.rm = TRUE)
# return tibble of valid features only
positive3 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
count = "clusters", geometry = FALSE)
class(positive3)
mean(positive3$positive)
# count respondents instead of clusters
positive4 <- qm_summarize(ref = stl, key = TRACTCE, clusters = clusters, category = "positive",
count = "respondents")
mean(positive4$positive)
Run the code above in your browser using DataLab