Learn R Programming

qualvar (version 0.2.0)

ADA: Average Deviation Analog (ADA)

Description

Computes the average deviation analog (ADA) for a vector of frequencies of categories.

Usage

ADA(x, na.rm = TRUE)

Arguments

x

a vector of frequencies

na.rm

if TRUE, missing values are removed. If FALSE, NA is returned if there is any NA value.

Value

The value of the ADA statistics, which is normalised (varies between 0 and 1).

Details

According to Wilcox (1973, p. 328), the ADA is 'an analog of the average or mean deviation'. The formula for the ADA is: $$1 - \frac{\sum_{i=1}^k \left| f_i - \frac{N}{K}\right|}{2 \frac{N}{K}(K-1)}$$

References

Wilcox, Allen R. 'Indices of Qualitative Variation and Political Measurement.' The Western Political Quarterly 26, no. 2 (1 June 1973): 325-43. doi:10.2307/446831.

Examples

Run this code
# NOT RUN {
x <- rmultinom(1, 100, rep_len(0.25, 4))
x <- as.vector(t(x))
ADA(x)

df <- rmultinom(10, 100, rep_len(0.25, 4))
df <- as.data.frame(t(df))
apply(df, 1, ADA)
# }

Run the code above in your browser using DataLab