Usage
textmodel_wordfish(data, dir = c(1, 2), priors = c(Inf, Inf, 3, 1),
tol = c(1e-06, 1e-08), dispersion = "poisson")## S3 method for class 'textmodel_wordfish_fitted':
print(x, n = 30L, ...)
## S3 method for class 'textmodel_wordfish_fitted':
show(object)
## S3 method for class 'textmodel_wordfish_predicted':
show(object)
Arguments
data
the dfm on which the model will be fit
dir
set global identification by specifying the indexes for a pair of
documents such that $\hat{\theta}_{dir[1]} < \hat{\theta}_{dir[2]}$.
priors
priors for $\theta_i$, $\alpha_i$, $\psi_j$, and
$\beta_j$ where $i$ indexes documents and $j$ indexes features
tol
tolerances for convergence (explain why a pair)
dispersion
sets whether a quasi-poisson quasi-likelihood should be used based on a single
dispersion parameter ("single"), dispersion parameters for each work ("byterm" or "bytermfloor"), or not ("none")
x
for print method, the object to be printed
n
max rows of dfm to print
...
additional arguments passed to other functions
object
wordfish fitted or predicted object to be shown