Learn R Programming

quanteda (version 1.3.14)

textstat_lexdiv: Calculate lexical diversity

Description

Calculate the lexical diversity or complexity of text(s).

Usage

textstat_lexdiv(x, measure = c("all", "TTR", "C", "R", "CTTR", "U", "S",
  "K", "D", "Vm", "Maas"), log.base = 10)

Arguments

x

an input dfm

measure

a character vector defining the measure to calculate.

log.base

a numeric value defining the base of the logarithm (for measures using logs)

...

not used

Value

textstat_lexdiv returns a data.frame of documents and their lexical diversity scores.

Details

textstat_lexdiv calculates a variety of proposed indices for lexical diversity. In the following formulas, \(N\) refers to the total number of tokens, \(V\) to the number of types, and \(f_v(i, N)\) to the numbers of types occurring \(i\) times in a sample of length \(N\).

"TTR":

The ordinary Type-Token Ratio: $$TTR = \frac{V}{N}$$

"C":

Herdan's C (Herdan, 1960, as cited in Tweedie & Baayen, 1998; sometimes referred to as LogTTR): $$C = \frac{\log{V}}{\log{N}}$$

"R":

Guiraud's Root TTR (Guiraud, 1954, as cited in Tweedie & Baayen, 1998): $$R = \frac{V}{\sqrt{N}}$$

"CTTR":

Carroll's Corrected TTR: $$CTTR = \frac{V}{\sqrt{2N}}$$

"U":

Dugast's Uber Index (Dugast, 1978, as cited in Tweedie & Baayen, 1998): $$U = \frac{(\log{N})^2}{\log{N} - \log{V}}$$

"S":

Summer's index: $$S = \frac{\log{\log{V}}}{\log{\log{N}}}$$

"K":

Yule's K (Yule, 1944, as presented in Tweedie & Baayen, 1998, Eq. 16) is calculated by: $$K = 10^4 \times \left[ -\frac{1}{N} + \sum_{i=1}^{V} f_v(i, N) \left( \frac{i}{N} \right)^2 \right] $$

"D":

Simpson's D (Simpson 1949, as presented in Tweedie & Baayen, 1998, Eq. 17) is calculated by: $$D = \sum_{i=1}^{V} f_v(i, N) \frac{i}{N} \frac{i-1}{N-1}$$

"Vm":

Herdan's \(V_m\) (Herdan 1955, as presented in Tweedie & Baayen, 1998, Eq. 18) is calculated by: $$V_m = \sqrt{ \sum_{i=1}^{V} f_v(i, N) (i/N)^2 - \frac{i}{V} }$$

"Maas":

Maas' indices (\(a\), \(\log{V_0}\) & \(\log{}_{e}{V_0}\)): $$a^2 = \frac{\log{N} - \log{V}}{\log{N}^2}$$ $$\log{V_0} = \frac{\log{V}}{\sqrt{1 - \frac{\log{V}}{\log{N}}^2}}$$ The measure was derived from a formula by Mueller (1969, as cited in Maas, 1972). \(\log{}_{e}{V_0}\) is equivalent to \(\log{V_0}\), only with \(e\) as the base for the logarithms. Also calculated are \(a\), \(\log{V_0}\) (both not the same as before) and \(V'\) as measures of relative vocabulary growth while the text progresses. To calculate these measures, the first half of the text and the full text will be examined (see Maas, 1972, p. 67 ff. for details). Note: for the current method (for a dfm) there is no computation on separate halves of the text.

References

Covington, M.A. & McFall, J.D. (2010). "Cutting the Gordian Knot: The Moving-Average Type-Token Ratio (MATTR)". Journal of Quantitative Linguistics 17(2), 94--100.

Herdan, Gustav. 1955. "A New Derivation and Interpretation of Yule's 'Characteristic' K." Zeitschrift f<U+00FC>r angewandte Mathematik und Physik 6(4): 332--34.

Maas, H.-D., (1972). "\"Uber den Zusammenhang zwischen Wortschatzumfang und L\"ange eines Textes". Zeitschrift f\"ur Literaturwissenschaft und Linguistik 2(8), 73--96.

McCarthy, P.M. & Jarvis, S. (2007). "vocd: A theoretical and empirical evaluation". Language Testing 24(4), 459--488.

McCarthy, P.M. & Jarvis, S. (2010). "MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment". Behaviour Research Methods 42(2), 381--392.

Michalke, Meik. (2014) koRpus: An R Package for Text Analysis. Version 0.05-5. http://reaktanz.de/?c=hacking&s=koRpus

Simpson, Edward H. 1949. "Measurement of Diversity." Nature 163: 688.

Tweedie. F.J. & Baayen, R.H. (1998). "How Variable May a Constant Be? Measures of Lexical Richness in Perspective". Computers and the Humanities 32(5), 323--352.

Examples

Run this code
# NOT RUN {
mydfm <- dfm(corpus_subset(data_corpus_inaugural, Year > 1980), verbose = FALSE)
(result <- textstat_lexdiv(mydfm, c("CTTR", "TTR", "U")))
cor(textstat_lexdiv(mydfm, "all")[,-1])

# }

Run the code above in your browser using DataLab