Learn R Programming

Cross-Quantilogram

Description

The quantilogram package provides estimation and inference methods for the cross-quantilogram. The cross-quantilogram is a measure of nonlinear dependence between two variables, based on either unconditional or conditional quantile functions. It can be considered an extension of the correlogram, which is a correlation function over multiple lag periods that mainly focuses on linear dependency.

This package allows users to detect the presence of directional predictability from one time series to another and provides a statistical inference method based on the stationary bootstrap.

Installation

You can install the released version of quantilogram from CRAN with:

install.packages("quantilogram")

Usage

Here's a basic example of how to use the quantilogram package:

library(quantilogram)

# Load example data
data("sys.risk")

# Select two variables
D = sys.risk[, c("JPM", "Market")]

# Set parameters
k = 1                             # lag order 
vec.q = seq(0.05, 0.95, 0.05)     # a list of quantiles 
B.size = 200                      # Repetition of bootstrap  

# Compute and plot cross-quantilogram
res = heatmap.crossq(D, k, vec.q, B.size) 

# Display the plot
print(res$plot)

For more detailed examples and function descriptions, please refer to the package documentation.

References

The methods implemented in this package are based on the following key publications:

  1. Linton, O., and Whang, Y. J. (2007). The quantilogram: With an application to evaluating directional predictability. Journal of Econometrics, 141(1), 250-282. doi:10.1016/j.jeconom.2007.01.004

  2. Han, H., Linton, O., Oka, T., and Whang, Y. J. (2016). The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series. Journal of Econometrics, 193(1), 251-270. doi:10.1016/j.jeconom.2016.03.001

License

This package is free and open source software, licensed under GPL (>= 3).

Copy Link

Version

Install

install.packages('quantilogram')

Monthly Downloads

274

Version

3.1.1

License

GPL (>= 3)

Maintainer

Tatsushi Oka

Last Published

August 27th, 2024

Functions in quantilogram (3.1.1)

crossq.partial.sb

Stationary Bootstrap for the Partial Cross-Quantilogram
sys.risk

The Data Set for Systemic Risk Analysis
qreg.hit

Quantile Hit
quantilogram-package

Quantilogram Analysis Tools
sb.index

Stationary Bootstrap Index
stock

The Data Set of Monthly Stock Return and Sotck Variance
q.hit

Quantile Hit
crossqreg.partial

Paritial Cross-Quantilogram
crossqreg.sb

Stationary Bootstrap for the Cross-Quantilogram
corr.lag.partial

Partial Cross-correlation function
Qstat.sb

Stationary Bootstrap for Q statistics
Qstat.reg.sb

Stationary Bootstrap for Q statistics
crossq

Cross-Quantilogram
crossq.heatmap

Heatmap of Cross-Quantilogram
Qstat.sb.opt

Stationary Bootstrap for Q statistics
crossq.max.partial

Partial Corss-Quantilogram upto a given lag order
Qstat

Q-statistics
corr.lag

Correlation Function
crossq.max

Corss-Quantilogram up to a Given Lag Order
crossq.partial.sb.opt

Stationary Bootstrap for the Partial Cross-Quantilogram dwith the choice of the stationary-bootstrap parameter
crossq.sb

Stationary Bootstrap for the Cross-Quantilogram
crossqreg.max.partial

Partial Corss-Quantilogram upto a given lag order
crossq.sb.opt

Stationary Bootstrap for the Cross-Quantilogram with the choice of the stationary-bootstrap parameter
crossq.plot

Plot of Cross-Quantilogram
crossqreg.max

Corss-Quantilogram up to a Given Lag Order
crossqreg

Cross-Quantilogram
crossq.partial

Paritial Cross-Quantilogram