Learn R Programming

quantreg (version 3.03)

akj: Density estimation using adaptive kernel method

Description

univariate adaptive kernel density estimation a la Silverman

Usage

akj(x, z, p, h, alpha, kappa, iker1, iker2)

Arguments

x
points used for centers of kernel assumed to be sorted
z
points at which density is calculated; default to seq( min(x), max(x), 2*length(x) )
p
vector of probabilities associated with x's; default to 1/len(x) for each x.
h
initial window size (overall); default to Silverman's normal reference
alpha
a sensitivity parameter that determines the sensitivity of the local bandwidth to variations in the pilot density; default to .5
kappa
constant determining initial (default) window width
iker1
kernel indicator, 0 for normal kernel (default) while 1 for cauchy kernel
iker2
xxx

Value

  • a R structure is returned
  • densthe vector of estimated density
  • psia vector of $\psi=-f'/f$ function
  • scorea vector of score $(f'/f)^2-f'/f$ function
  • hsame as the input argument h

References

Silverman, B. (1986) Density Estimation, pp100-104.