boot.rq(x, y, tau = 0.5, R = 200, bsmethod = "xy", mofn = length(y), ...)
[2] Kocherginsky, M., He, X. and Mu, Y. (2005). Practical Confidence Intervals for Regression Quantiles, Journal of Computational and Graphical Statistics, 14, 41-55.
[3] He, X. and Hu, F. (2002). Markov Chain Marginal Bootstrap. Journal of the American Statistical Association , Vol. 97, no. 459, 783-795.
[4] Parzen, M. I., L. Wei, and Z. Ying (1994): A resampling method based on pivotal estimating functions,'' Biometrika, 81, 341--350.
[5] Bose, A. and S. Chatterjee, (2003) Generalized bootstrap for estimators of minimizers of convex functions, J. Stat. Planning and Inf, 117, 225-239.
[6] Chamberlain G. and Imbens G.W. (2003) Nonparametric Applications of Bayesian Inference, Journal of Business & Economic Statistics, 21, pp. 12-18.
[7] Feng, Xingdong, Xuming He, and Jianhua Hu (2011) Wild Bootstrap for Quantile Regression, Biometrika, to appear.
summary.rq
y <- rnorm(50)
x <- matrix(rnorm(100),50)
fit <- rq(y~x,tau = .4)
summary(fit,se = "boot", bsmethod= "xy")
summary(fit,se = "boot", bsmethod= "pwy")
#summary(fit,se = "boot", bsmethod= "mcmb")
Run the code above in your browser using DataLab