These are internal functions of package quantregGrowth
and should be not
called by the user.
ncross.rq.fitXB(y, x, B=NULL, X=NULL, taus, monotone=FALSE, concave=FALSE,
nomiBy=NULL, byVariabili=NULL, ndx=10, deg=3, dif=3, lambda=0, eps=.0001,
var.pen=NULL, penMatrix=NULL, lambda.ridge=0, dropcList=FALSE,
decomList=FALSE, vcList=FALSE, dropvcList=FALSE, centerList=FALSE,
ridgeList=FALSE, ps.matrix.list=FALSE, colmeansB=NULL, Bconstr=NULL,
adjX.constr=TRUE, adList=FALSE, it.j=10, myeps=NULL, ...)ncross.rq.fitXBsparse(y, x, B=NULL, X=NULL, taus, monotone=FALSE, concave=FALSE,
nomiBy=NULL, byVariabili=NULL, ndx=10, deg=3, dif=3, lambda=0, eps=.0001,
var.pen=NULL, penMatrix=NULL, lambda.ridge=0, dropcList=FALSE, decomList=FALSE,
vcList=FALSE, dropvcList=FALSE, centerList=FALSE, ridgeList=FALSE,
ps.matrix.list=FALSE, colmeansB=NULL, Bconstr=NULL, adjX.constr=TRUE,
adList=FALSE, it.j=10, myeps=NULL, ...)
ncross.rq.fitX(y, X = NULL, taus, adjX.constr=TRUE, lambda.ridge = 0,
eps = 1e-04, ...)
gcrq.rq.cv(y, B, X, taus, monotone, concave, ndx, lambda, deg, dif, var.pen=NULL,
penMatrix=NULL, lambda.ridge=0, dropcList=FALSE, decomList=FALSE,
vcList=vcList, dropvcList=FALSE, nfolds=10, foldid=NULL, eps=.0001,
sparse=FALSE, ...)
A list of fit information.
the responses vector. see gcrq
the covariate supposed to have a nonlinear relationship.
the B-spline basis.
the design matrix for the linear parameters.
the percentiles of interest.
numerical value (-1/0/+1) to define a non-increasing, unconstrained, and non-decreasing flexible fit, respectively.
numerical value (-1/0/+1) to possibly define concave or convex fits.
useful for VC models (when B
is not provided).
useful for VC models (when B
is not provided).
number of internal intervals within the covariate range, see ndx
in ps
.
spline degree, see ps
.
difference order of the spline coefficients in the penalty term.
smoothing parameter value(s), see lambda
in ps
.
tolerance value.
Varying penalty, see ps
.
Specified penalty matrix, see pen.matrix
in ps
.
a (typically very small) value, see lambda.ridge
gcrq
.
see dropc
in ps
.
see decompose
in ps
.
to indicate if the smooth is VC or not, see by
in ps
.
see ps
.
see center
in ps
.
see ridge
in ps
.
nothing relevant for the user.
see center
in ps
.
see constr.fit
in ps.
vector (optional) to perform cross validation, see the same arguments in gcrq
.
number of folds for crossvalidation, see the same arguments in gcrq
.
returning cv scores; see the same arguments in gcrq
.
logical to shift the linear covariates. Appropriate only with linear terms.
see ad
in ps
.
Ignore.
Ignore.
logical, meaning if sparse computations have to be used.
optional.
Vito M. R. Muggeo
These functions are called by gcrq
to fit growth charts based on regression
quantiles with non-crossing and monotonicity restrictions. The computational methods are based on the package
quantreg by R. Koenker and details are described in the reference paper.
gcrq