## Not run:
# # load ggplot2 and the diamonds data set
# library(ggplot2)
# data(diamonds, package = "ggplot2")
#
# # Create two logistic regression models
# fit1 <- glm(I(price > 2800) ~ cut * color, data = diamonds, family = binomial())
# fit2 <- glm(I(price > 2800) ~ cut + color + clarity, data = diamonds, family = binomial())
#
# # Easiest way to get an ROC plot:
# qroc(fit1)
# qroc(fit2)
#
# # Create two data sets, this will also let you get the AUC out
# data1 <- qroc_build_data_frame(fit1)
# data2 <- qroc_build_data_frame(fit2)
#
# auc(data1)
# auc(data2)
#
# # Plotting the ROC from the data set can be done too
# qroc(data1)
#
# # Add the AUC value to the plot title
# qroc(data2) + ggtitle(paste("Fit 2\nAUC =", round(auc(data2), 2)))
#
# # build a data set for plotting to ROCs on one plot
# plot_data <- rbind(cbind(Model = "fit1", data1),
# cbind(Model = "fit2", data2))
# qroc(plot_data) + aes(color = Model)
#
# # with AUC in the legend
# plot_data <- rbind(cbind(Model = paste("Fit1\nauc =", round(auc(data1), 3)), data1),
# cbind(Model = paste("Fit2\nauc =", round(auc(data2), 3)), data2))
# qroc(plot_data) +
# theme_bw() +
# aes(color = Model, linetype = Model) +
# theme(legend.position = "bottom",
# legend.text.align = 0.5)
# ## End(Not run)
Run the code above in your browser using DataLab