Learn R Programming

r2dRue (version 1.0.3)

rueObsEx: Functions to perform the assessment component of a r2dRue analysis through direct specification of parameters

Description

These functions compute Mean Observed RUE, Mean Observed Aridity, Extreme Observed RUE and Extreme Observed Aridity, and save the results to corresponding raster files. Their arguments can be manually specified, or they are piped from the assessment function.

Usage

rueObsMe(rainFl, viFl, silent = FALSE)
aiObsMe(rainFl, petFl, FAO = FALSE, silent = FALSE)
rueObsEx(rainFl, viFl, preRainFl, nMonths = 6, silent = FALSE)
aiObsEx(rainFl, viFl, petFl, preRainFl, prePetFl, FAO=FALSE, nMonths = 6, silent = FALSE)

Arguments

rainFl
Raster group file with the file names of the precipitation grids
viFl
Raster group file with the file names of the vegetation index grids
petFl
Raster group file with the file names of the evapotranspiration grids
preRainFl
Raster group file with the file names of the precipitation files preceding the given period
prePetFl
Raster group file with the file names of the evapotranspiration files preceding the given period
FAO
logical; If TRUE the index is according with the FAO definition
nMonths
A integer value representing the number of cumulative months for preceding precipitation. If a valid image filename is supplied, the value is read from the file.
silent
Logical. If TRUE, comment and non-fatal CPL driver errors are suppressed

Value

  • The following raster files are created resulting from the assessment operation. They belong to the SpatialGridDataFrame class
  • rueObsMeMean Observed rain Use Efficiency
  • rueObsExExtreme Observed Rain Use Efficiency
  • aiObsMeMean Observed Aridity Index
  • aiObsExExtreme Observed Aridity Index

Details

rueObsMe compute mean observed RUE. aiObsMe compute mean observed aridity index. rueObsEx compute extreme observed RUE. aiObsEx compute extreme observed aridity index.

References

del Barrio, G., Puigdefabregas, J. Sanjuan, M.E., Stellmes, M. & Ruiz, A. (2010). Assessment and monitoring of land condition in the Iberian Peninsula, 1989-2000. Remote Sensing of Environment, 114: 1817-1832 http://dx.doi.org/10.1016/j.rse.2010.03.009

Examples

Run this code
#not work...
#frain=rgf.read('rain.rgf')
#fpet=rgf.read('pet.rgf')
#fvi=rgf.read('ndvi.rgf')
#rome=rueObsMe(frain,fvi)
#summary(rome)
#image(rome)
#writeGDAL(rome,'rome.rst',drivername='RST',mvFlag=-99)
#aiome=rueObsMe(frain,fvi,fpet)
#writeGDAL(aiome,'aiome.rst',drivername='RST',mvFlag=-99)

#fprain=read.rgf('prerain.rgf')
#fppet=read.rgf('prepet.rgf')
#roex=rueObsEx(frain,fvi,fprain)
#aioex=rueObsEx(frain,fvi,fprain,fppet)
#writeGDAL(roex,'roex.rst',drivername='RST',mvFlag=-99)
#writeGDAL(aioex,'aioex.rst',drivername='RST',mvFlag=-99)

Run the code above in your browser using DataLab