#To get the test statistic for the ratio which is significantly
#different from the expectation, this function estiamtes
#var (beta1^2/R^2), where
#beta1^2 and R^2 are regression coefficients and the
#coefficient of dterminationfrom a multiple regression model,
#i.e. y = x1 * beta1 + x2 * beta2 +e, where y, x1 and x2 are
#column-standardised.
dat=dat2
nv=length(dat$V1)
v1=c(1)
v2=c(2)
expected_ratio=0.04
output=r2_enrich_beta(dat,v1,v2,nv,expected_ratio)
output
#r2redux output
#output$beta1_sq (beta1_sq)
#0.01118301
#output$beta2_sq (beta2_sq)
#0.004980285
#output$ratio1 (beta1_sq/R^2)
#0.4392572
#output$ratio2 (beta2_sq/R^2)
#0.1956205
#output$ratio_var1 (variance of ratio 1)
#0.08042288
#output$ratio_var2 (variance of ratio 2)
#0.0431134
#output$upper_ratio1 (upper limit of 95% CI for ratio 1)
#0.9950922
#output$lower_ratio1 (lower limit of 95% CI for ratio 1)
#-0.1165778
#output$upper_ratio2 upper limit of 95% CI for ratio 2)
#0.6025904
#output$lower_ratio2 (lower limit of 95% CI for ratio 2)
#-0.2113493
#output$enrich_p1 (two tailed P-value for beta1_sq/R^2 is
#significantly different from exp1)
#0.1591692
#output$enrich_p1_one_tail (one tailed P-value for beta1_sq/R^2
#is significantly different from exp1)
#0.07958459
#output$enrich_p2 (two tailed P-value for beta2_sq/R2 is
#significantly different from (1-exp1))
#0.000232035
#output$enrich_p2_one_tail (one tailed P-value for beta2_sq/R2
#is significantly different from (1-exp1))
#0.0001160175
Run the code above in your browser using DataLab