Learn R Programming

r4lineups (version 0.1.1)

gen_esize_m: Effective Size (across a dataframe)

Description

Function for computing Effective Size (Tredoux, 1998) on lineups contained as columns in a df, usually from a bootstrapped sample

Usage

gen_esize_m(lineup_boot_df, k)

Arguments

lineup_boot_df

A dataframe containing bootstrapped samples of lineup data

k

Number of members in lineup. Must be specified by user (scalar).

Value

A vector of effective size calculations for each lineup in bootstrapped df

Details

This function computes effective size for k lineups simultaneously.

References

Malpass, R. S. (1981). Effective size and defendant bias in eyewitness identification lineups. Law and Human Behavior, 5(4), 299-309.

Malpass, R. S., Tredoux, C., & McQuiston-Surrett, D. (2007). Lineup construction and lineup fairness. In R. Lindsay, D. F. Ross, J. D. Read, & M. P. Toglia (Eds.), Handbook of Eyewitness Psychology, Vol. 2: Memory for people (pp. 155-178). Mahwah, NJ: Lawrence Erlbaum Associates.

Tredoux, C. G. (1998). Statistical inference on measures of lineup fairness. Law and Human Behavior, 22(2), 217-237.

Tredoux, C. (1999). Statistical considerations when determining measures of lineup size and lineup bias. Applied Cognitive Psychology, 13, S9-S26.

Wells, G. L.,Leippe, M. R., & Ostrom, T. M. (1979). Guidelines for empirically assessing the fairness of a lineup. Law and Human Behavior, 3(4), 285-293.

Examples

Run this code
# NOT RUN {
#Data:
lineup_vec <- round(runif(100,1,6))
bootdf <- gen_boot_samples(lineup_vec, 1000)

#Call:
esize_vec <- gen_esize_m(bootdf, 6)

# }

Run the code above in your browser using DataLab