Learn R Programming

r4lineups (version 0.1.1)

ln_diag_ratio: Ln of Diagnosticity Ratio

Description

Computes ln of diagnosticity ratio: ln(d)

Usage

ln_diag_ratio(linedf)

Arguments

linedf

A dataframe of parameters for computing diagnosticity ratio

Details

To get linedf, use the diag_param helper function

diag_param returns a dataframe containing the following:

  • n11: Number of mock witnesses who identified the suspect in the target present condition

  • n21: Number of mock witnesses who did not identify the suspect in the target present condition

  • n12: Number of mock witnesses who identified the suspect in the target absent condition

  • n13: Number of mock witnesses who did not identify the suspect in the target absent condition

References

Malpass, R. S. (1981). Effective size and defendant bias in eyewitness identification lineups. Law and Human Behavior, 5(4), 299-309.

Malpass, R. S., Tredoux, C., & McQuiston-Surrett, D. (2007). Lineup construction and lineup fairness. In R. Lindsay, D. F. Ross, J. D. Read, & M. P. Toglia (Eds.), Handbook of Eyewitness Psychology, Vol. 2: Memory for people (pp. 155-178). Mahwah, NJ: Lawrence Erlbaum Associates.

Tredoux, C. G. (1998). Statistical inference on measures of lineup fairness. Law and Human Behavior, 22(2), 217-237.

Tredoux, C. (1999). Statistical considerations when determining measures of lineup size and lineup bias. Applied Cognitive Psychology, 13, S9-S26.

Wells, G. L.,Leippe, M. R., & Ostrom, T. M. (1979). Guidelines for empirically assessing the fairness of a lineup. Law and Human Behavior, 3(4), 285-293.

Examples

Run this code
# NOT RUN {
#Target present data:
A <-  round(runif(100,1,6))
B <-  round(runif(70,1,5))
C <-  round(runif(20,1,4))
lineup_pres_list <- list(A, B, C)
rm(A, B, C)


#Target absent data:
A <-  round(runif(100,1,6))
B <-  round(runif(70,1,5))
C <-  round(runif(20,1,4))
lineup_abs_list <- list(A, B, C)
rm(A, B, C)

#Pos list
lineup1_pos <- c(1, 2, 3, 4, 5, 6)
lineup2_pos <- c(1, 2, 3, 4, 5)
lineup3_pos <- c(1, 2, 3, 4)
pos_list <- list(lineup1_pos, lineup2_pos, lineup3_pos)
rm(lineup1_pos, lineup2_pos, lineup3_pos)

#Nominal size:
k <- c(6, 5, 4)

#Use diag param helper function to get data (n11, n21, n12, n22):
linedf <- diag_param(lineup_pres_list, lineup_abs_list, pos_list, k)

#Call:
lnd <- ln_diag_ratio(linedf)

# }

Run the code above in your browser using DataLab