Learn R Programming

r4ss (version 1.20)

SS_profile: Run a likelihood profile in Stock Synthesis.

Description

Iteratively changes the control file using SS_changepars.

Usage

SS_profile(dir = "C:/myfiles/mymodels/myrun/", masterctlfile =
  "control.ss_new", newctlfile = "control_modified.ss",
  linenum = NULL, string = NULL, profilevec = NULL,
  usepar = TRUE, dircopy = TRUE, exe.delete = FALSE,
  model = "ss3", extras = "-nox", systemcmd = FALSE, saveoutput = TRUE,
  overwrite = TRUE, verbose = TRUE)

Arguments

dir
Directory where input files and executable are located.
masterctlfile
Source control file. Default = "control.ss_new"
newctlfile
Destination for new control files (must match entry in starter file). Default = "control_modified.ss".
linenum
Line number of parameter to be changed. Can be used instead of string or left as NULL.
string
String partially matching name of parameter to be changed. Can be used instead of linenum or left as NULL.
usepar
Use PAR file from previous profile step for starting values? NOT IMPLEMENTED YET.
dircopy
Copy directories for each run? NOT IMPLEMENTED YET.
exe.delete
Delete exe files in each directory? NOT IMPLEMENTED YET.
profilevec
Vector of values to profile over. Default = NULL.
model
Name of executable. Default = "ss3".
extras
Additional commands to use when running SS. Default = "-nox" will reduce the amound of command-line output.
systemcmd
Should R call SS using "system" function intead of "shell". This may be required when running R in Emacs. Default = FALSE.
saveoutput
Copy output .SSO files to unique names. Default = TRUE.
overwrite
Overwrite any existing .SSO files.
verbose
Controls amount of info output to command line. Default = TRUE.

See Also

SSplotProfile, SSgetoutput, SS_changepars, SS_parlines

Examples

Run this code
# note: don't run this in your main directory
# make a copy in case something goes wrong
mydir <- "C:/ss/Simple - Copy"

# the following commands related to starter.ss could be done by hand
# read starter file
starter <- SS_readstarter(file.path(mydir, 'starter.ss'))
# change control file name in the starter file
starter$ctlfile <- "control_modified.ss"
# make sure the prior likelihood is calculated
# for non-estimated quantities
starter$prior_like <- 1
# write modified starter file
SS_writestarter(starter, dir=mydir, overwrite=TRUE)

# vector of values to profile over
h.vec <- seq(0.3,0.9,.1)
Nprofile <- length(h.vec)

# run SS_profile command
profile <- SS_profile(dir=mydir, # directory
                      # "NatM" is a subset of one of the
                      # parameter labels in control.ss_new
                      model="ss3_safe",
                      masterctlfile="control.ss_new",
                      newctlfile="control_modified.ss",
                      string="steep",
                      profilevec=h.vec)


# read the output files (with names like Report1.sso, Report2.sso, etc.)
profilemodels <- SSgetoutput(dirvec=mydir, keyvec=1:Nprofile)
# summarize output
profilesummary <- SSsummarize(profilemodels)

# OPTIONAL COMMANDS TO ADD MODEL WITH PROFILE PARAMETER ESTIMATED
MLEmodel <- SS_output("C:/ss/SSv3.24l_Dec5/Simple")
profilemodels$MLE <- MLEmodel
profilesummary <- SSsummarize(profilemodels)
# END OPTIONAL COMMANDS

# plot profile using summary created above
SSplotProfile(profilesummary,           # summary object
              profile.string = "steep", # substring of profile parameter
              profile.label="Stock-recruit steepness (h)") # axis label

# make timeseries plots comparing models in profile
SSplotComparisons(profilesummary,legendlabels=paste("h =",h.vec))

Run the code above in your browser using DataLab