# NOT RUN {
# }
# NOT RUN {
######################################
#DO NOT RUN
tinss1 <- list(npars=A$fit$npar,maxgrad=A$fit$maxgrad,nsexes=1,
#note, there is an estimated parameter called sd_sbt,
# but it is a single value
SpawnBio=data.frame(c(1964,1965,A$yrs),
c(A$sbo,A$sbo,A$sbt)*1e6,0,
qnorm(0.025,c(A$so,A$so,A$sbt)*1e6,0),
qnorm(0.975,c(A$so,A$so,A$sbt)*1e6,0)),
Bratio=data.frame(A$yrs,A$sbt/A$sbo,0,
qnorm(0.025,A$sbt/A$sbo,0),
qnorm(0.975,A$sbt/A$sbo,0)),
SPRratio=data.frame(A$yr,A$spr,0,qnorm(0.025,A$spr,0),
qnorm(0.975,A$spr,0)),
recruits=data.frame(A$yr,A$nt[,1]*1e6,0,qnorm(0.025,A$nt[,1]*1e5,0),
qnorm(0.975,A$nt[,1]*1e6,0)),
#I'm not sure exactly what wt are,
# but it is important to line them up correctly
recdevs=data.frame(A$recYrs,A$wt),
indices = data.frame(A$iyr,1e6*A$yt,1e6*A$qbt,
rep(A$q,length(A$iyr)),rep(0.4,length(A$iyr)),
rep(0,length(A$iyr)),rep(1,length(A$iyr)))
)
tinss <- list(tinss1,tinss1) #can add more models here
#add TINSS model to SS models already summarized
SSnTINSS <- addSSsummarize(models,tinss)
mcmcInd <- seq(burnin+1,nrow(A$mc.sbt),thin)
SSnTINSS$mcmc[[2]] <- data.frame(A$mc.sb0[mcmcInd],
A$mc.sbt[mcmcInd,],
A$mc.depl[mcmcInd,],
A$mc.spr[mcmcInd,],
A$mc.rt[mcmcInd,],
log(A$mcmc[mcmcInd,"Ro"]*1e6),
A$mcmc[mcmcInd,"msy"]*1e6)
names(SSnTINSS$mcmc[[2]]) <-
c("SPB_Virgin",paste("SPB",A$yrs,sep="_"),
paste("Bratio",A$yrs,sep="_"),
paste("SPRratio",A$yr,sep="_"),
paste("Recr",A$yr,sep="_"),"SR_R0","TotYield_MSY")
modelnames <- c("SS", "TINSS","TINSS.MLE")
SSplotComparisons(SSnTINSS, legendlabels=modelnames,
subplot=2,endyr=2011,mcmcVec=c(T,T,F))
title(main="MCMC")
SSplotComparisons(SSnTINSS, legendlabels=modelnames,
subplot=4,endyr=2011,mcmcVec=c(T,T,F))
title(main="MCMC")
###############################################
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab