Learn R Programming

⚠️There's a newer version (1.15.4) of this package.Take me there.

rEDM

Overview

The rEDM package is a collection of methods for Empirical Dynamic Modeling (EDM). EDM is based on the mathematical theory of reconstructing attractor manifolds from time series data, with applications to forecasting, causal inference, and more. It is based on research software developed for the Sugihara Lab (University of California San Diego, Scripps Institution of Oceanography).

Empirical Dynamic Modeling (EDM)


This package implements an R wrapper of EDM tools from the cppEDM library. Introduction and documentation are are avilable online, or in the package tutorial.

Functionality includes:

  • Simplex projection (Sugihara and May 1990)
  • Sequential Locally Weighted Global Linear Maps (S-map) (Sugihara 1994)
  • Multivariate embeddings (Dixon et. al. 1999)
  • Convergent cross mapping (Sugihara et. al. 2012)
  • Multiview embedding (Ye and Sugihara 2016)

Installation

To install from CRAN:

install.packages(rEDM)

Using R devtools for latest development version:

install.packages("devtools")
devtools::install_github("SugiharaLab/rEDM")

Building from source:

git clone https://github.com/SugiharaLab/rEDM.git
cd rEDM
R CMD INSTALL .

Example

We begin by looking at annual time series of sunspots:

df = data.frame(yr = as.numeric(time(sunspot.year)), 
                 sunspot_count = as.numeric(sunspot.year))

plot(df$yr, df$sunspot_count, type = "l", 
     xlab = "year", ylab = "sunspots")

First, we use EmbedDimension() to determine the optimal embedding dimension, E:

library(rEDM)   # load the package
# If you're new to the rEDM package, please consult the tutorial:
# vignette("rEDM-tutorial")

E.opt = EmbedDimension( dataFrame = df,    # input data
                        lib     = "1 280", # portion of data to train
                        pred    = "1 280", # portion of data to predict
                        columns = "sunspot_count",
                        target  = "sunspot_count" )

E.opt
#     E    rho
# 1   1 0.7397
# 2   2 0.8930
# 3   3 0.9126
# 4   4 0.9133
# 5   5 0.9179
# 6   6 0.9146
# 7   7 0.9098
# 8   8 0.9065
# 9   9 0.8878
# 10 10 0.8773

Highest predictive skill is found between E = 3 and E = 6. Since we generally want a simpler model, if possible, we use E = 3 to forecast the last 1/3 of data based on training (attractor reconstruction) from the first 2/3.

simplex = Simplex( dataFrame = df, 
                   lib     = "1   190", # portion of data to train
                   pred    = "191 287", # portion of data to predict
                   columns = "sunspot_count",
                   target  = "sunspot_count",
                   E       = 3 )

plot( df$yr, df$sunspot_count, type = "l", lwd = 2,
      xlab = "year", ylab = "sunspots")
lines( simplex$yr, simplex$Predictions, col = "red", lwd = 2)
legend( 'topleft', legend = c( "Observed", "Predicted (year + 1)" ),
        fill = c( 'black', 'red' ), bty = 'n', cex = 1.3 )

Further Examples

Please see the package vignettes for more details:

browseVignettes("rEDM")

References

Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734–741.

Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688) : 477–495.

Dixon, P. A., M. Milicich, and G. Sugihara, 1999. Episodic fluctuations in larval supply. Science 283:1528–1530.

Sugihara G., May R., Ye H., Hsieh C., Deyle E., Fogarty M., Munch S., 2012. Detecting Causality in Complex Ecosystems. Science 338:496-500.

Ye H., and G. Sugihara, 2016. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 353:922–925.

Copy Link

Version

Install

install.packages('rEDM')

Monthly Downloads

579

Version

1.8.2

License

BSD_2_clause + file LICENSE

Maintainer

Joseph Park

Last Published

May 3rd, 2021

Functions in rEDM (1.8.2)

make_surrogate_data

Generate surrogate data for permutation/randomization tests
EDM

Empirical dynamic modeling
TentMapNoise

Time series of tent map plus noise.
simplex

Perform univariate forecasting
TentMap

Time series for a tent map with mu = 2.
Multiview

Forecasting using multiview embedding
block_lnlp

Perform generalized forecasting using simplex projection or s-map
block_gp

Deprecated functions
make_block

Make a time delay offset block
PredictInterval

Forecast interval accuracy
ccm

Convergent cross mapping using simplex projection
Embed

Embed data with time lags
PredictNonlinear

Test for nonlinear dynamics
multiview

Perform forecasting using multiview embedding
SMap

SMap forecasting
Thrips

Apple-blossom Thrips time series
paramecium_didinium

Time series for the Paramecium-Didinium laboratory experiment
MakeBlock

Make embedded data block
block_3sp

Time series for a three-species coupled model.
sardine_anchovy_sst

Time series for the California Current Anchovy-Sardine-SST system
compute_stats

Compute performance metrics for predictions
circle

2-D timeseries of a circle.
EmbedDimension

Optimal embedding dimension
EvergladesFlow

Water flow to NE Everglades
Lorenz5D

5-D Lorenz'96
CCM

Convergent cross mapping using simplex projection
Simplex

Simplex forecasting
ComputeError

Compute error
SurrogateData

Generate surrogate data for permutation/randomization tests