# A simple example dataset to be cut
tv_test <- data.frame(id = 1:5, start = rep(0, 5), end = c(1000, 689, 1000, 874, 777),
event = c(0,1,0,1,1), drug_1 = c(NA, NA, NA, 340, 460),
drug_2 = c(NA, 234, 554, 123, NA),
drug_3_start = c(110, 110,111, 109, 110),
drug_3_stop = c(400, 400, 400, 400, 400),
stage_1 = c(300, NA, NA, NA, NA),
stage_2 = c(450, NA, NA, NA, NA))
# Binary chronic covariates:
tv_out1 <- cut_tv(tv_test, start, end, drug_1, id_var = id, drug_1_state)
tv_out1 <- cut_tv(tv_out1, start, end, drug_2, id_var = id, drug_2_state)
# Binary covariates:
tv_out3 <- cut_tv(tv_test, start, end, drug_3_start, id_var = id, drug_3_state)
tv_out3 <- cut_tv(tv_out3, start, end, drug_3_stop, id_var = id, drug_3_state)
# incremental covariates:
inc_1 <- cut_tv(tv_test, start, end, stage_1, id_var = id, disease_stage, on_existing = "inc")
inc_1 <- cut_tv(inc_1, start, end, stage_2, id_var = id, disease_stage, on_existing = "inc")
# Chaining combinations of the above
## Not run:
# library(dplyr)
# tv_all <- tv_test %>%
# cut_tv(start, end, drug_1, id_var = id, drug_1_state) %>%
# cut_tv(start, end, drug_2, id_var = id, drug_2_state) %>%
# cut_tv(start, end, drug_3_start, id_var = id, drug_3_state) %>%
# cut_tv(start, end, drug_3_stop, id_var = id, drug_3_state) %>%
# cut_tv(start, end, stage_1, id_var = id, disease_stage, on_existing = "inc") %>%
# cut_tv(start, end, stage_2, id_var = id, disease_stage, on_existing = "inc")
# ## End(Not run)
Run the code above in your browser using DataLab