Estimation Details
Estimation of forest variables follows the procedures documented in Bechtold and Patterson (2005) and Stanke et al 2020. Specifically, tree biomass and carbon per acre are computed using a sample-based ratio-of-means estimator of total biomass / total land area within the domain of interest.
A sum of aboveground biomass components, excluding foliage, is estimated by default (component = 'AG'
). However, users may specify unique combinations of biomass components if they wish to do so. For example, to estimate aboveground biomass, including foliage, specify component = c('AG', 'FOLIAGE')
in the call to biomass
. To estimate all biomass components simultaneously (i.e., grouped by component), specify byComponent = TRUE
. All biomass components are computed using the component ratio method by default (method currently used by the FIA program). Alternatively, biomass components may be computed using allometric equations previously used by the FIA program (i.e., Jenkins equations) by setting bioMethod = "JENKINS"
. See Woodall et al (2011) for a complete description of the component ratio method, and Jenkins et al (2003) for the Jenkins approach.
Users may specify alternatives to the 'Temporally Indifferent' estimator using the method
argument. Alternative design-based estimators include the annual estimator ("ANNUAL"; annual panels, or estimates from plots measured in the same year), simple moving average ("SMA"; combines annual panels with equal weight), linear moving average ("LMA"; combine annual panels with weights that decay linearly with time since measurement), and exponential moving average ("EMA"; combine annual panels with weights that decay exponentially with time since measurement). The "best" estimator depends entirely on user-objectives, see Stanke et al 2020 for a complete description of these estimators and tradeoffs between precision and temporal specificity.
When byPlot = FALSE
(i.e., population estimates are returned), the "YEAR" column in the resulting dataframe indicates the final year of the inventory cycle that estimates are produced for. For example, an estimate of current forest area (e.g., 2018) may draw on data collected from 2008-2018, and "YEAR" will be listed as 2018 (consistent with EVALIDator). However, when byPlot = TRUE
(i.e., plot-level estimates returned), the "YEAR" column denotes the year that each plot was measured (MEASYEAR), which may differ slightly from its associated inventory year (INVYR).
Stratified random sampling techniques are most often employed to compute estimates in recent inventories, although double sampling and simple random sampling may be employed for early inventories. Estimates are adjusted for non-response bias by assuming attributes of non-response plot locations to be equal to the mean of other plots included within thier respective stratum or population.
Working with "Big Data"
If FIA data are too large to hold in memory (e.g., R throws the "cannot allocate vector of size ..." errors), use larger-than-RAM options. See documentation of link{readFIA}
for examples of how to set up a Remote.FIA.Database
. As a reference, we have used rFIA's larger-than-RAM methods to estimate forest variables using the entire FIA Database (~50GB) on a standard desktop computer with 16GB of RAM. Check out our website for more details and examples.
Easy, efficient parallelization is implemented with the parallel
package. Users must only specify the nCores
argument with a value greater than 1 in order to implement parallel processing on their machines. Parallel implementation is achieved using a snow type cluster on any Windows OS, and with multicore forking on any Unix OS (Linux, Mac). Implementing parallel processing may substantially decrease free memory during processing, particularly on Windows OS. Thus, users should be cautious when running in parallel, and consider implementing serial processing for this task if computational resources are limited (nCores = 1
).
Definition of forestland
Forest land must be at least 10-percent stocked by trees of any size, including land that formerly had such tree cover and that will be naturally or artificially regenerated. Forest land includes transition zones, such as areas between heavily forested and nonforested lands that are at least 10-percent stocked with trees and forest areas adjacent to urban and builtup lands. The minimum area for classification of forest land is 1 acre and 120 feet wide measured stem-to-stem from the outer-most edge. Unimproved roads and trails, streams, and clearings in forest areas are classified as forest if less than 120 feet wide. Timber land is a subset of forest land that is producing or is capable of producing crops of industrial wood and not withdrawn from timber utilization by statute or administrative regulation. (Note: Areas qualifying as timberland are capable of producing at least 20 cubic feet per acre per year of industrial wood in natural stands. Currently inaccessible and inoperable areas are NOT included).