# simulate some linear regression data
n <- 1e3
p <- 100
X <- matrix(rnorm(n*p),n,p)
wt <- sample(seq(0,9),p+1,replace = TRUE) / 10
z <- cbind(1,X) %*% wt + rnorm(n)
probs <- 1 / (1 + exp(-z))
y <- sapply(probs, function(p) rbinom(1,1,p))
m1 <- logreg(X, y)
m2 <- logreg(X, y, nlambda = 100, lambda.min.ratio = 1e-4, type = 1)
## Not run:
# # Performance comparison
# library(glmnet)
# library(microbenchmark)
# nlambda = 50; lambda.min.ratio = 1e-3
# microbenchmark(
# logreg_type1 = logreg(X, y, nlambda = nlambda,
# lambda.min.ratio = lambda.min.ratio, type = 1),
# logreg_type2 = logreg(X, y, nlambda = nlambda,
# lambda.min.ratio = lambda.min.ratio, type = 2),
# glmnet = glmnet(X, y, family = "binomial",
# nlambda = nlambda, lambda.min.ratio = lambda.min.ratio),
# times = 20L
# )
# ## End(Not run)
Run the code above in your browser using DataLab