require(ggplot2)
data(matrices)
data(exData)
#### run function
richness <- msc.richness(matrices, samples = exData$samples, groups = exData$species)
apply(richness$table[which(richness$table$group=="L. peruviana"),-(1:2)], 2, mean)
apply(richness$table[which(richness$table$group=="L. braziliensis"),-(1:2)], 2, mean)
apply(richness$table[which(richness$table$group=="hybrid"),-(1:2)], 2, mean)
#### visualize results
barplot(richness$table[,"id93"], names.arg = richness$table[,1],
las=2, cex.names=0.4, main="N of MSC at id 93")
#### adjust plot
richness$plot + ggtitle("MSC richness across % id") +
theme(axis.text.x = element_text(angle=45, hjust=1))
### show results of subset
table(exData$species)
hybrid <- which(exData$species=="hybrid")
# richness.subset <- msc.richness(matrices, samples = exData$samples[hybrid],
# groups = exData$species[hybrid])
Run the code above in your browser using DataLab