Calculates the Hodges-Lehmann estimator.
HL(x, estimator = c("HL1", "HL2", "HL3"), na.rm = FALSE)
It returns a numeric value.
a numeric vector of observations.
a character string specifying the estimator, must be
one of "HL1"
(default), "HL2"
and "HL3"
.
a logical value indicating whether NA values should be stripped before the computation proceeds.
Chanseok Park and Min Wang
HL
computes the Hodges-Lehmann estimators (one of "HL1"
, "HL2"
, "HL3"
).
The Hodges-Lehmann (HL1) is defined as $$\mathrm{HL1} = \mathop{\mathrm{median}}_{i<j} \Big( \frac{X_i+X_j}{2} \Big)$$ where \(i,j=1,2,\ldots,n\).
The Hodges-Lehmann (HL2) is defined as $$\mathrm{HL2} = \mathop{\mathrm{median}}_{i \le j}\Big(\frac{X_i+X_j}{2} \Big).$$
The Hodges-Lehmann (HL3) is defined as $$\mathrm{HL3} = \mathop{\mathrm{median}}_{\forall(i,j)} \Big( \frac{X_i+X_j}{2} \Big).$$
Park, C., H. Kim, and M. Wang (2022).
Investigation of finite-sample properties of robust location and scale estimators.
Communications in Statistics - Simulation and Computation,
51, 2619-2645.
tools:::Rd_expr_doi("10.1080/03610918.2019.1699114")
Hodges, J. L. and E. L. Lehmann (1963). Estimates of location based on rank tests. Annals of Mathematical Statistics, 34, 598--611.
x = c(0:10, 50)
HL(x, estimator="HL2")
Run the code above in your browser using DataLab