Learn R Programming

rSFA (version 1.01)

sfaClassify: Predict Class for SFA classification

Description

Create a SFA classification mode, predict & evaluate on new data (xtst,realc_tst). Author of orig. matlab version: Wolfgang Konen, May 2009 - Jan 2010 See also [Berkes05] Pietro Berkes: Pattern recognition with Slow Feature Analysis. Cognitive Sciences EPrint Archive (CogPrint) 4104, http://cogprints.org/4104/ (2005)

Usage

sfaClassify(x, realclass, xtst = 0, realcTst = 0, opts)

Arguments

x
NREC x IDIM, training input data
realclass
1 x NREC, training class labels
xtst
NTST x IDIM, test input data
realcTst
1 x NTST, test class labels
opts
list with several parameter settings: [object Object],[object Object],[object Object]

Value

  • list res containing
  • res$errtrn1 x 2 matrix: error rate with / w/o SFA on training set
  • res$errtst1 x 2 matrix: error rate with / w/o SFA on test set
  • res$youtput from SFA when applied to training data
  • res$ytstoutput from SFA when applied to test data
  • res$predTpredictions with SFA + GaussClassifier on test set
  • res$predXpredictions w/o SFA (only GaussClassifier) on test set (only if opts.xFilename exists)

See Also

sfaClassPredict sfaExecute