# load in ggplot
library(ggplot2)
# subset for the first TPC curve
data('chlorella_tpc')
d <- subset(chlorella_tpc, curve_id == 1)
# get start values and fit model
start_vals <- get_start_vals(d$temp, d$rate, model_name = 'thomas_2012')
# fit model
mod <- nls.multstart::nls_multstart(rate~thomas_2012(temp = temp, a, b, c, topt),
data = d,
iter = c(4,4,4,4),
start_lower = start_vals - 1,
start_upper = start_vals + 2,
lower = get_lower_lims(d$temp, d$rate, model_name = 'thomas_2012'),
upper = get_upper_lims(d$temp, d$rate, model_name = 'thomas_2012'),
supp_errors = 'Y',
convergence_count = FALSE)
# look at model fit
summary(mod)
# get predictions
preds <- data.frame(temp = seq(min(d$temp), max(d$temp), length.out = 100))
preds <- broom::augment(mod, newdata = preds)
# plot
ggplot(preds) +
geom_point(aes(temp, rate), d) +
geom_line(aes(temp, .fitted), col = 'blue') +
theme_bw()
Run the code above in your browser using DataLab