Learn R Programming

rTorch (version 0.0.3)

torch_extract_opts: Tensor extract options

Description

Tensor extract options

Usage

torch_extract_opts(style = getOption("torch.extract.style"), ...,
  one_based = getOption("torch.extract.one_based", TRUE),
  inclusive_stop = getOption("torch.extract.inclusive_stop", TRUE),
  disallow_out_of_bounds = getOption("torch.extract.dissallow_out_of_bounds",
  TRUE),
  warn_tensors_passed_asis = getOption("torch.extract.warn_tensors_passed_asis",
  TRUE),
  warn_negatives_pythonic = getOption("torch.extract.warn_negatives_pythonic",
  TRUE))

Arguments

style

one of `NULL` (the default) `"R"` or `"python"`. If supplied, this overrides all other options. `"python"` is equivalent to all the other arguments being `FALSE`. `"R"` is equivalent to `warn_tensors_passed_asis` and `warn_negatives_pythonic` set to `FALSE`

...

ignored

one_based

TRUE or FALSE, if one-based indexing should be used

inclusive_stop

TRUE or FALSE, if slices like `start:stop` should be inclusive of `stop`

disallow_out_of_bounds

TRUE or FALSE, whether checks are performed on the slicing index to ensure it is within bounds.

warn_tensors_passed_asis

TRUE or FALSE, whether to emit a warning the first time a tensor is supplied to `[` that tensors are passed as-is, with no R to python translation

warn_negatives_pythonic

TRUE or FALSE, whether to emit a warning the first time a negative number is supplied to `[` about the non-standard (python-style) interpretation

Value

an object with class "torch_extract_opts", suitable for passing to `[.torch.tensor()`

Examples

Run this code
# NOT RUN {
x <- tf$constant(1:10)

opts <-  torch_extract_opts("R")
x[1, options = opts]

# or for more fine-grained control
opts <- torch_extract_opts(
    one_based = FALSE,
    warn_tensors_passed_asis = FALSE,
    warn_negatives_pythonic = FALSE
)
x[0:2, options = opts]
# }

Run the code above in your browser using DataLab