Last chance! 50% off unlimited learning
Sale ends in
GLCM Features
glcm_mean(glcm)glcm_variance(glcm)
glcm_autoCorrelation(glcm)
glcm_cProminence(glcm)
glcm_cShade(glcm)
glcm_cTendency(glcm)
glcm_contrast(glcm)
glcm_correlation(glcm)
glcm_differenceEntropy(glcm, base = 2)
glcm_dissimilarity(glcm)
glcm_energy(glcm)
glcm_entropy(glcm, base = 2)
glcm_homogeneity1(glcm)
glcm_homogeneity2(glcm)
glcm_IDMN(glcm)
glcm_IDN(glcm)
glcm_inverseVariance(glcm)
glcm_maxProb(glcm)
glcm_sumAverage(glcm)
glcm_sumEntropy(glcm, base = 2)
glcm_sumVariance(glcm)
A matrix of class "glcm" produced by glcm
.
Base of the logarithm in differenceEntropy.
glcm_mean
: Mean
glcm_variance
: Variance
glcm_autoCorrelation
: Autocorrelation
glcm_cProminence
: Cluster Prominence
glcm_cShade
: Cluster Shade
glcm_cTendency
: Cluster Tendency
glcm_contrast
: Contrast
glcm_correlation
: Correlation
glcm_differenceEntropy
: Difference Entropy
glcm_dissimilarity
: Dissimilarity
glcm_energy
: Energy
glcm_entropy
: Entropy
glcm_homogeneity1
: Homogeneity
glcm_homogeneity2
: Homogeneity 2
glcm_IDMN
: Inverse Difference Moment (Normalized)
glcm_IDN
: Inverse Difference (Normalized)
glcm_inverseVariance
: Inverse Variance
glcm_maxProb
: Maximum Probability
glcm_sumAverage
: Sum Average
glcm_sumEntropy
: Sum Entropy
glcm_sumVariance
: Sum Variance
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102107#s5