50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


rags2ridges (version 2.2.2)

GGMnetworkStats.fused: Gaussian graphical model network statistics

Description

Compute various network statistics from a list sparse precision matrices. The sparse precision matrix is taken to represent the conditional independence graph of a Gaussian graphical model. This function is a simple wrapper for GGMnetworkStats.

Usage

GGMnetworkStats.fused(Plist)

Arguments

Plist

A list of sparse precision/partial correlation matrix.

Value

A data.frame of the various network statistics for each class. The names of Plist is prefixed to column-names.

Details

For details on the columns see GGMnetworkStats.

See Also

GGMnetworkStats

Examples

Run this code
# NOT RUN {
## Create some "high-dimensional" data
set.seed(1)
p <- 10
ns <- c(5, 6)
Slist <- createS(ns, p)

## Obtain sparsified partial correlation matrix
Plist    <- ridgeP.fused(Slist, ns, lambda = c(5.2, 1.3), verbose = FALSE)
PCsparse <- sparsify.fused(Plist , threshold = "absValue", absValueCut = 0.2)
SPlist <- lapply(PCsparse, "[[", "sparsePrecision") # Get sparse precisions

## Calculate GGM network statistics in each class
# }
# NOT RUN {
GGMnetworkStats.fused(SPlist)
# }

Run the code above in your browser using DataLab