Last chance! 50% off unlimited learning
Sale ends in
Compute various network statistics from a list
sparse precision matrices. The sparse precision matrix is taken to represent the conditional independence graph of a Gaussian graphical model.
This function is a simple wrapper for GGMnetworkStats
.
GGMnetworkStats.fused(Plist)
A list
of sparse precision/partial correlation matrix.
A data.frame
of the various network statistics for each class. The names of Plist
is prefixed to column-names.
For details on the columns see GGMnetworkStats
.
# NOT RUN {
## Create some "high-dimensional" data
set.seed(1)
p <- 10
ns <- c(5, 6)
Slist <- createS(ns, p)
## Obtain sparsified partial correlation matrix
Plist <- ridgeP.fused(Slist, ns, lambda = c(5.2, 1.3), verbose = FALSE)
PCsparse <- sparsify.fused(Plist , threshold = "absValue", absValueCut = 0.2)
SPlist <- lapply(PCsparse, "[[", "sparsePrecision") # Get sparse precisions
## Calculate GGM network statistics in each class
# }
# NOT RUN {
GGMnetworkStats.fused(SPlist)
# }
Run the code above in your browser using DataLab